
Thesis for the Degree of

Doctorof Philosophy

Deep Learning-based Latent Source

Analysis for Source-aware Audio

Manipulation

by

Woosung Choi

Department of Computer Science and

Engineering

Graduate School

Korea University

August 2021

鄭鄭鄭舜舜舜榮榮榮 敎敎敎授授授指指指導導導

博博博 士士士 學學學 位位位 論論論 文文文

Deep Learning-based Latent Source

Analysis for Source-aware Audio

Manipulation

이 論論論文文文을 컴퓨터學學學 博博博士士士學學學位位位 論論論文文文으로

提提提出出出함

2021年年年 06月月月 21日日日

高高高 麗麗麗 大大大 學學學 校校校 大大大 學學學 院院院

컴 퓨 터 學學學 科科科

崔崔崔 宇宇宇 成成成 (印印印)

崔崔崔宇宇宇成成成의 컴퓨터學學學 博博博士士士學學學位位位論論論文文文 審審審査査査를

完完完了了了함

2021年年年 06月月月 21日日日

委委委員員員長長長 정 순 영 (印印印)

委委委　員員員 유 헌 창 (印印印)

委委委　員員員 김 현 철 (印印印)

委委委　員員員 서 태 원 (印印印)

委委委　員員員 정 재 화 (印印印)

Abstract

This dissertation presents deep learning-based latent source analysis for source-aware

audio manipulation. It mainly focuses on three audio tasks as follows: (1) dedicated source

separation, (2) conditioned source separation, and (3) Audio Manipulation on Specified

Sources (AMSS). The first and second tasks are variants of audio source separation, which

aims to extract sources of interest from the given mixture. AMSS, which aims to perform

audio transformations to user-specified sources of a given audio track according to a given

description, is the original task this dissertation proposes. A novel concept called Latent

Sources Analysis is introduced for conditioned source separation and AMSS. Models are

designed on top of it, showing outstanding performance in both tasks.

This dissertation first introduces a simple but effective frequency transformation method

called Time-Distributed Fully connected network (TDF) to improve the source separation

performance of dedicated models. The experimental results indicate that injecting TDFs

into a traditional U-Net structure can significantly improve the source separation quality.

TDF is extended to Latent Source-attentive Frequency Transformation (LaSAFT) for

Conditioned Source Separation by employing latent source analysis. A latent source deals

with a more detailed acoustic feature aspect than a symbolic-level source. The experi-

mental results show that a Conditioned-U-Net equipping LaSAFTs outperforms existing

conditioned source separation models by analyzing latent sources’ frequency patterns.

Finally, this dissertation formulates a novel audio task called AMSS and proposes a

textual query language called Audio Manipulation Language (AML) based on Context-

Free Grammar. Furthermore, it proposes a neural network called AMSS-Net based on

latent source analysis for AMSS. It extracts latent sources and selectively manipulates

them while preserving irrelevant sources. Also, an evaluation benchmark for AMSS is

proposed to measure the performance of models for AMSS. Experimental results show

that AMSS-Net outperforms baselines on several AMSS tasks via objective metrics and

empirical verification.

Contents

Abstract

Contents

List of Figures

List of Tables

1 Introduction 1

1.1 Structure and Objectives of the Thesis . 6

1.2 Contributions . 7

1.3 Publications . 9

2 Background 11

2.1 Digital Audio Signal Processing . 12

2.1.1 Digital Audio Signal . 12

2.1.2 Multi-track Recording and Audio Mixing 13

2.1.3 Audio Effects . 13

2.1.4 Time-Frequency Analysis . 14

2.2 Deep Learning for Audio Processing . 16

2.2.1 Audio Source Separation . 16

2.2.2 Modeling Audio Effects . 19

2.2.3 Automatic Mixing . 20

3 Frequency Transformation for Dedicated Source Separation 23

3.1 Dedicated Models for Audio Source Separation 24

3.2 U-Net for Spectrogram-based Source Separation 25

3.3 Spectrogram Estimation Methods . 28

3.3.1 Direct Magnitude Estimation . 28

3.3.2 Magnitude Mask Estimation . 28

3.3.3 Direct Complex-valued Spectrogram Estimation 30

3.3.4 Complex Mask Estimation . 31

3.4 Baseline U-Net Architecture . 32

3.5 Frequency Transformation Block . 35

3.6 Experiment . 37

3.6.1 Setup . 37

3.6.2 Comparison of Spectrogram Estimation Methods 38

3.6.3 Injecting frequency transformation blocks into a standard U-Net

architecture . 41

3.6.4 Comparison with State-of-the-art Models 42

3.6.5 Ablation Study . 42

3.6.6 Silent Mixture Waveform Separation 45

3.7 Discussion . 47

3.8 Conclusion . 48

4 Frequency Transformation for Conditioned Source Separation 49

4.1 Conditioned Models for Audio Source Separation 50

4.2 Latent Source Analysis for Conditioned Separation 52

4.3 Baseline Architecture: Conditioned U-Net 53

4.3.1 The Generic U-Net . 54

4.3.2 The Condition Generator . 55

4.4 Frequency Transformation for Conditioned Separation 56

4.4.1 Naive Approaches . 56

4.4.2 LaSAFT: Latent Source-attentive Frequency Transformation Blocks 57

4.5 Feature Modulation . 59

4.5.1 PoCM: Point-wise Convolutional Modulation 59

4.5.2 GPoCM: Gated Point-wise Convolutional Modulation 59

4.6 Experiments . 61

4.6.1 Experiment Setup . 61

4.6.2 Results . 61

4.7 Discussion . 64

4.8 Conclusion . 65

5 Latent Source Analysis for Audio Manipulation on Selective Sources 67

5.1 Audio Manipulation on Specified Sources 68

5.2 Audio Manipulation Language . 71

5.3 Training Framework for AMSS . 73

5.4 AMSS-Net Architecture . 75

5.4.1 Description Encoder . 75

5.4.2 Spectrogram Encoder-Decoder Network 76

5.4.3 Aggregate PoCM . 82

5.5 Experiments . 83

5.5.1 Experiment Setup . 83

5.5.2 Model Configurations . 83

5.5.3 Quantitative Analysis . 86

5.5.4 Latent Source Channels . 87

5.5.5 Progressive Manipulation . 88

5.5.6 Controlling the level of audio effects 89

5.6 Discussion . 91

5.7 Conclusion . 92

6 Conclusion 93

7 Appendix 95

7.1 Appendix A - Context-Free Grammar for Audio Manipulation Language . 95

Bibliography 97

Acknowledgement

List of Figures

1.1 Object Removal with an Image Inpainting Model [20] 2

1.2 An Example of image manipulation with textual queries using Describe

What to Change (DWC) model [23] . 3

1.3 Sound objects are transparent . 3

2.1 Digital audio signal . 12

2.2 Taxonomy of source separation models . 18

3.1 Dedicated Models . 24

3.2 U-Net architecture used in [1] for Singing Voice Separation 25

3.3 Magnitude Spectrograms of different instruments 27

3.4 Spectrogram Estimation Methods . 29

3.5 Baseline U-Net Architecture . 32

3.6 Time-Frequency Convolutions . 34

3.7 Time-Distributed Fully-connected networks 35

3.8 Time-Frequency Convolutions with TDF 36

3.9 Weight Visualization in single-layered TDFs 44

3.10 Result for Silent Mixture Signal Separation Task 45

4.1 Multi Source Separation Task . 51

4.2 The baseline architecture . 53

4.3 FiLM layers . 55

4.4 The condition generator . 56

4.5 TDF: Time Distributed Fully Connected Layers 57

4.6 Conceptual view of a LaSAFT block . 57

4.7 Latent Source Attentive Frequency Transformation 58

4.8 PoCM layers . 60

5.1 An example of AMSS Training Triple Generation Processes 74

5.2 AMSS-Net Architecture . 75

5.3 kth decoding block (Dk) . 77

5.4 Conceptual View of Latent Source Channels 78

5.5 Mel-Spectrogram of single latent-source channel 88

5.6 An Example of Progressive Manipulation 88

5.7 Mel-Spectrogram Comparison after applying 20 times of ‘apply highpass to

durms’ in a progressive manner . 89

5.8 Controlling the level of highpass with adjectives 90

List of Tables

3.1 Comparison of TFC-TDF-U-Nets on spectrogram estimation methods: Source-

to-Distortion Ratio (SDR) . 39

3.2 Comparison of TFC-TDF-U-Nets on spectrogram estimation methods: Im-

age to Spatial Distortion Ratio (ISR) . 39

3.3 Comparison of TFC-TDF-U-Nets on spectrogram estimation methods: Source-

to-Interferences Ratio (SIR) . 40

3.4 Comparison of TFC-TDF-U-Nets on spectrogram estimation methods: Sources-

to-Artifacts Ratio (SAR) . 40

3.5 Evaluation results of Time-Frequency Blocks. 41

3.6 Comparison with state-of-the-art models on MUSDB dataset 43

3.7 Ablation Study of TFC-TDF-U-Nets (Vocals) 44

4.1 An ablation study: dedicated means U-Nets for the single source separation,

trained separately. FiLM CUNet refers the baseline in section 4.3. The last

row is our proposed model. 62

4.2 A comparison SDR performance of our models with other systems. ‘∗’

denotes model operating in time domain. 63

5.1 List of AMSS tasks modeled in this paper: (∗) denotes reversed generation

process (the line 5 in Algorithm 1) . 70

5.2 A comparison SDR performance. LaSAFT-GPoCM-Netx uses FFT window

size of 2x . 84

5.3 A RMSE-MFCC Comparison of the proposed models with baselines, over

7 AMSS tasks applied to vocals, drums, and bass 85

Chapter 1

Introduction

The technological advances of recent decades enable people to create audio or video

content with mobile devices such as smartphones. Besides, many social media applica-

tions have attracted numerous users. Now they create, edit, and share their multimedia

contents with other users. In general, however, it is difficult for non-experts to edit mul-

timedia content such as image, audio, and video. To edit these types of content, users

should know how to use editing tools with many buttons, functions, and parameters. For

example, removing undesired objects is extremely difficult because such tasks usually re-

quire advanced skills to fill eliminated areas (e.g., pixels, frequency bins, or frames) with

plausible contents.

Fortunately, many automatic editing tools have been proposed in the computer vision

field to fulfill the need for an easy-to-use interface for image editing. Especially, recently

proposed data-driven approaches such as image inpainting [20, 64], style transfer [67],

and text-guided image manipulation [19, 23] provide next generation image editing in-

terfaces. Users can get rid of unwanted objects in their image, for example, using deep

learning-based inpainting [20, 64] methods. Image inpainting was initially proposed to

reconstruct missing areas in a damaged image. However, it is also possible to remove

objects by intentionally corrupting the input image and inpainting the corrupted with a

trained inpainting model. If a user masks objects such as the tower in Figure 1.1 (a), and

1

reconstruct it with model1 proposed in [20], then she or he can obtain the desired output

as shown in Figure 1.1 (c).

(a) original (b) original + mask (c) inpainted by model

Figure 1.1: Object Removal with an Image Inpainting Model [20]

Recent methods such as ManiGAN and Describe What to Change (DWC) [19, 23]

provide more powerful tools. With DWC, users can interactively manipulate their images

by simply typing text queries, as shown in Figure 1.2. These methods are helpful for

users, especially those who lack prior knowledge of image editing. Users can edit images

without a laborious search for appropriate buttons, functions, and appropriate parameter

configurations.

Various researchers in the signal processing field also have investigated data-driven

approaches to automate audio editing. However, proposed methods are limited in terms

of effectiveness compared to those of the computer vision field. Developing an audio

editing model is often considered more challenging due to the transparency, a unique

characteristic of audio signals, as discussed in [62].

An object is said to be transparent if multiple sources can have energy in it. Figure 1.3

compares the characteristics of an image and an audio track in terms of transparency. As

illustrated in Figure 1.3 (a), a single pixel in the given image usually corresponds to only

a single object. A marked pixel belongs to the bird’s head in Figure 1.3 (a). The other

pixel belongs to a branch of a tree in the figure. Since a pixel usually carries the energy

of a specific object, an image pixel is considered opaque.

1interactive demo site - https://www.nvidia.com/research/inpainting/

2

Figure 1.2: An Example of image manipulation with textual queries using Describe What

to Change (DWC) model [23]

On the other hand, a sound object does not always belong to a single object in general.

A sound object is an accumulated value of objects from different sources. It carries

information from multiple sources, no matter how it is represented. It can be represented

as a sample in a waveform or a frequency bin in a spectrogram, but both formats deal

with multiple sources. For instance, suppose that a user has a waveform which is the

mixture of three different sources, namely, female vocal, violin, and cello, as illustrated in

Figure 1.3 (b). In contrast to an image pixel, a sound object of a random moment does

not correspond to a single object, as shown in the figure. Furthermore, the energy ratio of

each source is also blind unless the sources were observable. In general, those source-level

audio tracks are not provided for the most non-expert end-users.

Figure 1.3: Sound objects are transparent

3

This property makes audio editing more challenging. Recall the example of image

manipulation introduced in Figure 1.2. As mentioned before, users can manipulate a

specific object in an image by writing text queries such as “change the blond hair to

yellow” by using trained neural networks. An advanced user of image editing tools also can

perform such a task by manipulating target pixels with tools such as a brush. Similarly,

suppose that a user wants to make the violin sound softer (i.e., smaller volume) and dryer

(i.e., weak reverberation) in the example of Figure 1.3 (b). This task is difficult even for

the experienced audio engineers because they must decompose the given track into a set of

different sources from scratch; the violin and the others. This task is also known as Audio

Source Separation. After separating sources successfully, they finally try to manipulate

the violin track, which is painful again. It is still laborious to find an ideal Digital Signal

Processing (DSP) function and appropriate parameters.

Moreover, audio source separation itself is not trivial at all due to the transparency. It

is relatively easy to separate sources that have a restricted frequency range, such as bass

guitars. For example, we can extract bass guitars from the music mixture by applying

a low-pass filter function that filters out signals with higher frequencies than the given

threshold. However, this approach is limited when applied to sources with a wide range

of frequencies such as speech, singing voices, and drums. Besides, frequency ranges of

different sources often overlap, making source separation more challenging. Audio engi-

neers must carefully adjust parameters for each temporal chunk of samples to separate a

specific source of which frequency range changes dynamically.

This complex procedure for audio source separation can be automated using the recent

development of data-driven approaches. Many deep learning methods for source separa-

tion [1, 63, 21, 22, 32, 43, 60] have been proposed during the last decade. They have

trained neural networks to predict the separated signal of an individual source for the

given input mixture in an end-to-end manner. During the training phase, parameters in

networks are optimized for the given source separation tasks. Most methods are trained to

separate either a single source [1, 63] or multiple sources [22] simultaneously. The former

is called dedicated models and the latter is called multi-head models. They are preferable

4

due to their simplicity, robustness, and effectiveness.

Several researchers have proposed novel architectures that can perform several tasks

with a single model conditioned on an extra signal. Throughout the rest of this thesis,

these are called Conditioned Source Separation methods. Although the performance of

conditioned separation models is usually inferior to that of the corresponding dedicated

counterparts, they are preferable for service providers since they can perform multi-tasks

with a single instance with limited parameters. A detailed overview of source separation

models based on deep learning is given in section 2.2.1.

This thesis aims to develop various methods for audio processing that reduce human

labor. This thesis mainly focuses on three audio tasks as follows: (1) dedicated source

separation, (2) conditioned source separation, and (3) a novel task called Audio Manipu-

lation on Specified Sources (AMSS). This paper introduces a novel concept called latent

sources, which deal with more detailed aspects of audio signals than symbol-level sources

to improve the performance of dedicated separation models and conditioned models.

On top of source separation methods, neural networks can perform advanced tasks,

as computer vision models have shown. Considering that audio editing usually requires

expert knowledge of audio engineering or signal processing, this thesis explores a deep

learning approach for the third task, AMSS, in conjunction with textual queries to lessen

audio editing difficulty. AMSS aims to edit only desired objects that correspond to specific

sources, such as vocals and drums, according to a given description while preserving the

content of sources that are not mentioned in the description. For AMSS, this thesis defines

a query language called Audio Manipulation Language based on Context-Free Grammar

[5]. Although many machine learning approaches have been proposed for audio processing

[28, 29, 27, 48, 61, 33, 1, 32, 60, 43], to the best of our knowledge, there is no existing

method that can directly address AMSS. The proposed method analyzes latent sources

relying on the internal features for AMSS. The proposed method can be used for many

applications, such as video creation tools making audio editing easy for non-experts. For

example, users can decrease the volume of drums by typing simple textual instructions

instead of time-consuming interactions with digital audio workstations.

5

1.1 Structure and Objectives of the Thesis

This thesis focuses on deep neural networks that reduce the difficulty of audio pro-

cessing. The rest of this thesis is structured as follows: Chapter 2 overviews background

technologies and the relevant literature related to this thesis. Chapter 3 proposes a method

called frequency transformation to capture frequency-to-frequency correlations observed

in spectrograms for dedicated source separation. Chapter 4 extends frequency transfor-

mation methods to conditioned source separation based on the Latent Source Analysis

Chapter 5 defines a novel audio processing task called Audio Manipulation on Specified

Sources and proposes a deep neural network based on the Latent Source Analysis again.

Chapter 6 discusses the pros, cons, reusable insights, and potential applications of pro-

posed models. This thesis is concluded in Chapter 7.

6

1.2 Contributions

The contributions of this thesis are summarized as follows:

• This thesis proposes a simple but effective Frequency Transformation method called

Time-Distributed Fully connected network (TDF) that improves the source separa-

tion performance of U-Nets.

• This thesis empirically verifies that U-Nets equipping TDFs can outperform existing

source separation models, especially for sources with harmonic frequency patterns

such as singing voice.

• A novel concept of Latent Sources Analysis is proposed, which can be used to im-

prove separation qualities of conditioned source separation models. The proposed

concept is reusable to other tasks, including AMSS.

• An extension of frequency transformation block called Latent Source-attentive Fre-

quency Transformation (LaSAFT) is proposed. It is an attention-based novel fre-

quency transformation block that captures instrument-dependent frequency pat-

terns.

• An extension of FiLM call Gated Point-wise Convolutional Modulation (GPoCM)

is proposed to modulate internal features for conditioned source separation.

• The experimental results show that a Conditioned-U-Net equipping LaSAFTs out-

performs existing conditioned models. The proposed model achieves state-of-the-art

performance on several MUSDB18 tasks.

• This work is a pioneer study on selective audio manipulation. This thesis formulates

a novel audio task called Audio Manipulation on Specified Sources (AMSS) and

proposes a textual query language called Audio Manipulation Language based on

Context-Free Grammar.

7

• A supervised training framework for AMSS is proposed based on source observable

multi-track datasets and DSP libraries together with evaluation benchmarks for

AMSS.

• This thesis proposes AMSS-Net, a novel neural architecture for AMSS. AMSS-Net

performs latent source analysis that enables AMSS-Net to manipulate the given

audio track delicately according to the text query.

• This thesis validates AMSS-Net architecture by presenting several experimental re-

sults, including an ablation study. AMSS-Net shows comparable performance to the

state-of-the-art source separation models and performs more complicated source-

level manipulation tasks for the given text queries.

8

1.3 Publications

Some ideas and figures have appeared previously in the following publications.

I Woosung Choi, Minseok Kim, Jaehwa Chung, Daewon Lee, and Soonyoung Jung.

2020. Investigating u-nets with various intermediate blocks for spectrogram-based

singing voice separation. In Proceedings of the 21th International Society for Music

Information Retrieval Conference.

II Woosung Choi, Minseok Kim, Jaehwa Chung, and Soonyoung Jung. 2021. Lasaft:

Latent Source Attentive Frequency Transformation For Conditioned Source Separa-

tion. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). 171–175.

https://doi.org/10.1109/ICASSP39728.2021.9413896

III Woosung Choi, Minseok Kim, Marco A. Mart ınez Ram ırez, Jaehwa Chung, and

Soonyoung Jung. 2021. AMSS-Net: Audio Manipulation on User-Specified Sources

with Textual Queries. arXiv:2104.13553 [eess.AS]

IV Minseok Kim, Woosung Choi, Jaehwa Chung, Daewon Lee, and Soonyong Jung.

2019. Deep Convolutional Music Source Separation with Complex-valued Spectro-

grams. In the 3rd ICICPE 2019 Conference.

9

Chapter 2

Background

This chapter reviews the literature related to source-aware audio manipulation based

on deep learning technologies. Section first 2.1 defines digital audio signals and reviews

fundamental signal processing methods. Section 2.2 summarizes deep learning methods

for audio processing such as audio source separation (section 2.2.1), modeling audio effects

(section 2.2.2), and automatic audio mixing (section 2.2.3).

11

2.1 Digital Audio Signal Processing

This dissertation focuses on various audio tasks, namely, audio source separation and

audio manipulation on specific sources. This section first defines audio signals in section

2.1.1, and multi-track in section 2.1.2. Section 2.1.3 overviews fundamental digital signal

processing methods for audio and section 2.1.4 reviews the time-frequency analysis which

is frequently used in digital signal processing.

2.1.1 Digital Audio Signal

An audio signal is represented as a sequence of numbers in modern computer systems.

As described in Figure 2.1, every item of a digital audio signal is sampled from a value

of sound wave at a specific moment. A digital audio signal is often denoted by a discrete

function x[n], where input n is an integer and x[n] is the sampled value at the timestamp

n.

(a) sound wave (b) sampling (c) digital audio signal

Figure 2.1: Digital audio signal

The number of samples per second is called sampling rate. One of the most commonly

used sampling rates is 44,100 Hz is because it is greater than twice the maximum hearing

frequency. Some special purposed systems often use lower sampling rates. For example,

a corpus for Automatic Speech Recognition (ASR) called LibriSpeech [36] contains 1000

hours of speech sampled at 16kHz. Since the frequency range of human voice is restricted,

using a much larger sampling rate for ASR usually does not significantly improve the

performance. For such tasks, lower sampling rates might be preferable. However, it is

assumed that the sampling rate of an arbitrary audio signal is 44,100 Hz in this dissertation

12

if not mentioned because MUSDB18 [41], a frequently used dataset throughout this paper,

uses 44,100 Hz.

2.1.2 Multi-track Recording and Audio Mixing

Multi-track audio files are commonly used for music production and other fields. They

are obtained by multi-track recording, where multiple sources are recorded separately

(but not necessarily simultaneously). Multi-track audio, organized in a specific format

or a Digital Audio Workstation (DAW) session, provides individual sources instead of

a mixed audio track. They are helpful to music producers and sound engineers since

they can provide the complete observability of individual sources, which mixed audio files

cannot. For example, Native Instruments STEMS Format, or STEMS 1 is an open multi-

track audio format. A Stem file contains four different musical sources: drums, bass,

melody, and vocals. Every file from the MUSDB18 [41] dataset is encoded in the STEMS

format. These files can be used for creative tasks such as remixing to alter a song to suit

a different style.

Audio mixing is a task that combines multi-track recordings into a single audio track.

Before taking the sum of signals (also known as mixdown), mix engineers usually apply

various audio effects such as equalization and panning for a better hearing experience

to minimize the interference between sources. Audio mixing requires deep background

knowledge of sound engineering in general. Recently, some researchers have tried to

automate audio mixing with deep learning approaches. Section 2.2.3 introduces such

methods.

2.1.3 Audio Effects

As described in [48], audio effects are used to modify perceptual attributes of the

given audio signal, such as loudness, spatialization, and timbre. They are also used for

better hearing experience to avoid the undesirable interference between different sources

as described in section 2.1.2.

1https://www.stems-music.com/

13

For example, audio engineers use Equalization effects to cut a specific frequency range

of an instrument off so that listeners can focus on the other instrument, which has a more

attractive timbre in that frequency range. There are various types of frequency filters in

equalization effects. For example, a high-pass filter passes signals with higher frequencies

than the given threshold. Similarly, a low-pass filter passes signals with lower frequencies

than the given threshold. On the other hand, engineers use Delay effects to simulate

the reflection of sound waves. Producers and DJs often use Delay effects to implement

reverberant environments such as concert halls. There are several types of delay effects,

such as reverberation and echo.

Similar to Audio Mixing, several methods have been proposed to automate audio ef-

fects. Using these effects also requires prior knowledge of sound engineering because an

audio effect is usually controlled with many parameters. For example, an artificial re-

verberation has many controllable parameters such as room size, delay time, pre-delay

time, decay, and high-cut threshold. It is painful even for experts to search the optimal

configuration of an effect for the given contents. Deep learning enables to automate this

configuration search with the data-driven approach, as described in section 2.2.2. Also,

some of the effects above are modeled with deep neural networks in chapter 5.

2.1.4 Time-Frequency Analysis

Many real-world applications, such as, require both time and frequency information.

For example, a DAW developer may want to visualize how the spectrum of frequencies

varies with time. This visualization help music producers understand how the energy

distribution of frequencies changes over time. In this scenario, the developer should im-

plement Time-Frequency analysis methods such as Short-Time Fourier Transformation

(STFT).

A Fourier Transform decomposes a time-varying signal into a weighted sum of trigono-

metric functions. The Short-Time Fourier Transformation performs Fourier Transform to

each fixed-length window of samples. Since the computed coefficients are complex-valued,

some audio engineers decompose the STFT outputs into Magnitude and Phase spectro-

14

gram. The Magnitude spectrogram of a signal can provide information on the energy

distribution of frequencies. However, the linear scale of STFT outputs is not preferable

for some tasks such as Automatic Speech Recognition (ASR) because human hearing is

logarithmic. Therefore, some engineers take log-power spectrogram of the magnitude or

even apply Mel-scale transform [7, 46, 10, 9] to the log-power spectrogram. Chapter 3

compares the performance of some types of spectrogram aforementioned in the Music

Source Separation task.

15

2.2 Deep Learning for Audio Processing

Many practical DSP algorithms such as artificial reverberation, noise-canceling, or

bandpass filters have been developed for audio engineers. The evolution in deep learning

techniques has recently motivated the signal processing community to investigate deep

learning approaches for digital audio processing. Deep learning, a part of machine learning

technologies, is based on artificial neural networks. The beauty of deep learning is that

one can make a machine learn a complicated task end-to-end if provided sufficient training

data items and a well-defined loss function. Although it requires abundant background

knowledge to design an appropriate architecture and a laborious search for optimal hyper-

parameters, a deep learning-based approach is attractive due to its powerful performance.

For example, audio source separation can be automated with deep learning models. As

mentioned in chapter 1, audio source separation is not trivial due to the transparency of

an audio track. Audio engineers have to listen carefully to adjust DSP parameters such

as a threshold frequency to separate sources of interest. However, audio source separation

can be automated with a data-driven approach based on deep learning, which is discussed

in section 2.2.1. Audio effects such as equalization, distortion, and reverberation can also

be modeled with deep learning, which is reviewed in section 2.2.2. Besides, deep learning

can model mixing procedure, as summarized in 2.2.3.

2.2.1 Audio Source Separation

An audio file usually contains multiple sources. For example, music signals are mix-

tures of several sub-tracks such as vocals, drums, and bass. Also, meeting recordings

have multiple speakers. In some applications such as Speech Enhancement, the unwanted

sound, noise, is also considered as a source. Noise is generated for several reasons: elec-

tronic noise, thermal noise, and physical noise in the real world. Speech Enhancement

aims to extract clean speech from the noisy one.

The goal of Audio Source Separation is to extract a specific source from a given mix-

ture. Recently, many machine learning-based methods have been proposed for audio

16

source separation. They can be categorized into two groups in terms of the overall es-

timation method: waveform-to-waveform models and spectrogram-based models. The

former method tries to generate the target waveform directly. Wave-U-Net [49], TasNet

[25, 24], Conv-TasNet[26], and Demucs [6] are waveform-to-waveform models. TasNet

and Conv-TasNet were proposed for speech separation. Speech separation is a special

case of audio source separation, of which the goal is to separate individual speech from

the overlapping speech signals. The authors of [24] trained TasNet to perform Speech

Dereverberation, of which the goal is to extract a clean speech from a reverberant speech.

Wave-U-Net and Demucs were proposed for Music Source Separation. They proposed

waveform-to-waveform models adopting U-Net [42] structure and trained their models us-

ing MUSDB18 [41] dataset, which contains four different sources, namely, vocals, drums,

bass, and ‘other.’ The authors of [6] also trained Conv-TasNet for music source separation

using the same dataset. The quality of their separation are well organized and discussed

in [6]. Demucs is one of the state-of-the-art models on the MUSDB18 benchmark.

While the waveform-to-waveform models aim to generate the target waveform directly,

the spectrogram-based models estimate the spectrogram of the target source. In general,

they apply Short-Time Fourier Transform (STFT) on a mixture waveform to obtain the

input spectrograms. Then, they estimate spectrograms of the target source and finally

restore the vocal waveform with inverse STFT (iSTFT).

A typical example of spectrogram-based models is a U-Net model proposed in [1],

which section 3.2 reviews in detail. The proposed model is an encoder-decoder architec-

ture with symmetric skip connections. [37, 65, 54, 53, 55] also proposed similar architec-

tures. Especially, MMDenseNet[54] and its extension called MMDenseLSTM[53] adopted

densely connected convolution blocks [16], initially proposed in computer vision, report-

ing promising results on MUSDB18 tasks. D3Net [55], which uses dilated convolutions

with dense connection, currently holds state-of-the-art performance on several MUSDB18

tasks. While the models mentioned above usually use 2-D convolutions as a fundamental

building block, DGRU-DGConv [22] uses 1-D convolutions. DGRU-DGConv is another

state-of-the-art model on MUSDB18 tasks.

17

The number of tasks that the model can perform is another criterion to categorize

deep learning-based source separation methods. They are categorized into three group,

(1) dedicated models, (2) multi-head models, and (3) conditioned models, as shown in

Figure 2.2.

Figure 2.2: Taxonomy of source separation models

Most of the early models for Source Separation are dedicated models. Each of them

is dedicated to a single instrument. This approach, however, has a critical drawback: we

must train an individual model to separate a source because trained models cannot share

parameters.

A multi-head model is a simple extension from dedicated separation to multi-source

separation by using multi-head components. They generate several outputs simultane-

ously at a single inference. For example, DGRU-DGConv [22] generates multiple outputs.

However, it also has a drawback in terms of scaling the number of sources: the number

of heads increases as the number of sources increases, leading to the performance degra-

dation caused by the shared bottleneck and the inefficient memory usage, as pointed out

in Publish II.

18

While these methods separate either a single source or multiple sources once, condi-

tioned source separation methods [32, 43] isolate the source specified by an input symbol.

A conditioned model separates different instruments with the aid of the control mecha-

nism. Since it does not need a multi-head output layer, there is no shared bottleneck. For

example, Meta-TasNet [43] and Conditioned U-Net [32] proposed models that separate the

source specified by an external symbol such as “vocals” or (1,0,0,0). Since such architec-

tures enable efficient parameter-sharing for multi-source separation, they have attracted

considerable interest despite their inferior performance.

Chapter 4 introduces a conditioned source separation model called Latent Source At-

tentive Frequency Transformation (LaSAFT), which is one of the state-of-the-art condi-

tioned models on several MUSDB18 [41] tasks.

2.2.2 Modeling Audio Effects

As described in section 2.1.3, audio effects are used to modify perceptual attributes

of the given audio signal, such as loudness, spatialization, and timbre. Recently, several

methods [28, 29, 27, 48, 61] have been proposed for audio effect modeling with deep neural

networks. [28] proposed a convolutional network performing equalization (i.e., an audio

effect that changes the harmonic and timbrel characteristics of audio signals). [29, 27]

proposed convolutional and recurrent networks for nonlinear audio effects with Long and

Short-Term Memory [15], such as distortion and Leslie speaker cabinet. [48] presented

an efficient neural network for modeling an analog dynamic range compressor enabling

real-time operation on CPU.

The authors of [29] have extensively surveyed various audio effects and existing data-

driven approaches for modeling them in [29]. They categorized audio effects into several

types: nonlinear audio effects with short-term memory, time-dependent nonlinear effects,

and time-varying audio effects. There are several effects in each type. For instance,

amplifier, distortion and equalization are effects with nonlinear with short-term memory.

They summarized methods for modeling each type in detail in [29].

19

All the methods mentioned above assume an audio input with a single source, while

tasks addressed in this dissertation assume that an input is a mixture of several sources.

Considering the transparency of sound mentioned in chapter 1, the environment assumed

in this dissertation is more challenging than that of the existing methods.

It is also notable that the existing methods are dedicated to a single task (the trained

model provides only one audio effect), while models for Conditioned Source Separation

(see chapter 4) and AMSS (see chapter 5) can perform several tasks with a single instance.

Although their performance is slightly inferior to their counterpart state-of-the-art mod-

els, they are still advantageous with respect to the task-scalability and memory space

efficiency.

2.2.3 Automatic Mixing

Audio mixing is a task that combines multi-track recordings into a single audio track.

Sound engineers apply various audio signal processing techniques such as equalization

and panning for a better hearing experience to minimize the interference between sources

before they take the sum of signals.

As mentioned in section 2.1.2, some approaches have attempted to automate this pro-

cedure with deep neural networks. For example, [47] proposed neural networks based on

temporal dilated convolutions to learn neural proxies of specific audio effects and train

them jointly to perform audio mixing. The authors of [30] reported that their drum mix-

ing model could produce a virtually indistinguishable mixing result from a professional

human-made mix in terms of user preference. Their model is expected to perform all

signal processing or transformation involved in producing a musical mix.

These methods mainly focus on developing expert-type mixing models that combine

individual sources into a mixture track, regardless of user control or input for the desired

type of transformation. Unlike [47, 30], [31] assumed an environment where individ-

ual sources are not provided as input. They proposed an algorithmic framework that

automatically remixes early jazz recordings, which are often perceived as irritating and

disturbing from today’s perspective. It first decomposes the given input into individual

20

tracks by means of acoustic source separation algorithms and remixes them using auto-

matic mixing algorithms. [33] proposed a replacement of the source separation and the

mixing processes by deep neural networks. [33] mainly focuses on remixing to change the

audio mixing style.

21

Chapter 3

Frequency Transformation for

Dedicated Source Separation

This chapter proposes a dedicated source separation model based on a U-Net [42]

architecture, which uses simple but effective frequency transformation blocks called Time-

Distributed Fully-Connected Layers (TDF). This chapter shows that injecting TDFs into

a fully convolutional U-Net can significantly improve the performance of dedicated source

separation model and discusses how it improves performance by visualizing the weight

matrix of a trained TDF. Specifically, section 3.1 introduces dedicated models for audio

source separation. Section 3.2 reviews an existing dedicated separation model based on

U-Net [42], which is fully convolutional. Section 3.3 summarizes several spectrogram

estimation methods. Section 3.4 introduces a generalized architecture of U-Net, and the

concept of Frequency Transformation, and section 3.5 proposes TDF. The experimental

results are finally summarized in section 3.6 and the results are discussed in section 3.7.

23

3.1 Dedicated Models for Audio Source Separation

As mentioned in section 2.2.1, machine learning models for source separation can be

grouped into three categories: (1) dedicated models, (2) multi-head models, and (3) con-

ditioned models. This chapter focuses on dedicated models to improve their performance

with simple but effective blocks called Time-Distributed Fully connected layers (TDF).

Figure 3.1: Dedicated Models

A dedicated model is trained to separate a single source, as its name implies. In other

words, an individual model must be trained per each source of interest as illustrated

in Figure 3.1 . Despite this disadvantage, many researchers and engineers prefer this

model since it is easy to implement but produces high-quality results. Dedicated models

usually outperform the other types with comparable parameters since dedicated models

are solely optimized to a single source while the other types have to consider multiple

sources simultaneously.

An early method[1] proposed a dedicated model that aims to separate singing voice

signals from mixtures using the U-Net architecture [42]. They trained a U-Net to estimate

the target spectrogram of singing voice from the spectrogram of the input mixture. This

model also can be trained to separate other instruments such as bass or drums if provided

a proper training dataset for such instruments. The following section reviews the U-Net

architecture for Spectrogram-based Source Separation.

24

3.2 U-Net for Spectrogram-based Source Separation

While waveform-to-waveform methods such as [49, 6] estimate the target waveform

from an input mixture waveform, spectrogram-to-spectrogram methods [1, 54, 63] predict

the spectrogram of the target from a mixture spectrogram. This section introduces an

early dedicated method [1] that aims to predict spectrograms of singing voice from mixture

spectrograms using the U-Net architecture [42]. They formulated the singing voice sepa-

ration as the translation of a mixed spectrogram into the vocal spectrogram and proposed

a translation method adopting U-Net [42], an image-to-image translation model. U-Net,

proposed initially for vision tasks, can be easily extended because a spectrogram consists

of 2-D (time and frequency) bins, which is similar to a 2-D image consisting of pixels.

Figure 3.2: U-Net architecture used in [1] for Singing Voice Separation

The U-Net architecture used in [1] is illustrated in Figure 3.2. As shown in the figure,

it is a fully convolutional encoder-decoder network with symmetric skip connections. The

U-Net f with parameters Θ takes as input the magnitude spectrogram M of a given

mixture and outputs f(M,Θ), a soft mask which is multiplied element-wise with M . The

25

shape of f(M,Θ) is the same as the input’s. It estimates the magnitude spectrogram T̂

of singing voice as follows:

T̂ = f(M,Θ)⊙M , where⊙ denotes the Hadamard product. (3.1)

It can finally generate the signals of singing vocals by applying iSTFT to the complex-

valued spectrograms obtained from T̂ and the phase information of the mixtures. They

trained f to minimize the following loss function Lunet for the estimated spectrogram T̂

and the ground-truth spectrogram T of singing voice:

Lunet(M,T ; Θ) = L1(f(M,Θ), T) = L1(T̂ , T), where L1(x, y) = ||x− y||1 (3.2)

Treating spectrograms as images, the U-Net architecture proposed in [1] can separate

singing voice signals from mixtures. Despite the successful extension to source separation

from image segmentation, however, several researchers [54, 63, 62] have pointed out that

the power of 2-D fully-CNNs is limited when applied to spectrogram processing. 2-D CNNs

are proper building blocks for image processing since they excel at capturing spatially

invariant features. However, it does not seem necessary for spectrograms, where each

y-coordinate (frequency bin) corresponds to a fixed position in the given frequency range.

Furthermore, patterns with very long-ranged dependencies are found along the frequency

axis due to the harmonic structure of sounds. Fully 2-D convolutional model might not

be ideal to capture such patterns in terms of the receptive field.

Figure 3.3 illustrates an example where the magnitude spectrograms of four instru-

ments playing the same note were plotted. If a spectrogram is shifted along the y-axis

and the output signal is reconstructed by applying iSTFT, the output would be far differ-

ent from the original signal since its frequency information has changed. Also, long-range

frequency patterns are observable in Figure 3.3. Moreover, it is observable that each in-

strument produces unique frequency patterns occurred by resonance. Source separation

models need to capture those unique frequency-to-frequency dependencies observed in

26

spectrograms since they are critical clues to distinguish sources.

Figure 3.3: Magnitude Spectrograms of different instruments

These patterns can only be recognized by stacking many convolutional layers to enlarge

the receptive field. However, a fully connected layers might be more suitable and efficient

building blocks since even a single instance of them gives an entire receptive field. For

example, a speech enhancement model called Phasen [63], which equips a fully connected

layer in building blocks, achieved the state-of-the-art performance for speech enhancement.

This type of block is called Frequency Transformation Block through the rest of the paper,

and section 3.5 reviews a frequency transformation block called TDF and its variant used

in detail.

This chapter aims to validate the following assumption: Injecting frequency transfor-

mation blocks into a standard U-Net architecture can significantly improve the separation

performance. Section 3.4 presents a generalized architecture of U-Net. However, there

are multiple options when designing a U-Net structure for audio source separation based

on spectrograms. Thus, section 3.3 first summarizes possible spectrogram estimation

methods. Section 3.5 proposes TDF blocks which improves the performance of a stan-

dard U-Net. Section 3.6 compares the performance of two models (namely, the fully

convolutional U-Net and the enhanced U-Net presented in section 3.5), which share the

generalized architecture.

27

3.3 Spectrogram Estimation Methods

This section reviews different methods that have been used for source separation based

on spectrogram. They are categorized into four groups as follows: (1) Direct Magnitude

Estimation (DME), (2) Magnitude Mask Estimation (MME), (3) Direct Complex-valued

Spectrogram Estimation (DCSE), and (4) Complex-valued spectrogram Mask Estimation

(CME). Figure 3.4 summarizes their data flows.

As illustrated in Figure 3.4, every method takes a raw STFT output Mcomplex, which

is complex-valued. While DME and MME only feed the magnitude spectrogram Mmag

into their neural networks, DCSE and CME feed the original Mcomplex to their networks.

Also, DME and MME aim to estimate the magnitude spectrogram of the target source

T̂mag, the others aim to estimate the raw complex-valued spectrogram T̂mag of the target.

3.3.1 Direct Magnitude Estimation

The Direct Magnitude Estimation (DME) method takes the magnitude spectrogram

Mmag of a mixture signal as input (or the log-scale magnitude log(1 + Mmag)). As

illustrated in Figure 3.4. (a), it directly estimates the magnitude spectrogram T̂mag of

the separated target signal. To obtain the target signal, it combines T̂mag with Mpahse to

construct the complex-valued spectrogram T̂complex and apply iSTFT to T̂complex. DME-

based models are usually trained to reduce the MSE or MAE between T̂mag and the

ground-truth target magnitude spectrogram Tmag.

Although it may seem impractical to estimate the target magnitude in an unbounded

manner, some studies [22, 53] have empirically shown that DME-based models can show

outstanding results. For example, DGRU-DGConv [22], one of the state-of-the-art models,

is trained to directly estimate T̂mag for a given input log(1 + Mmag).

3.3.2 Magnitude Mask Estimation

The Magnitude Mask Estimation (MME) method takes the magnitude spectrogram

Mmag of a mixture signal as input (or the log-scale magnitude log(1 + Mmag)). MME-

28

(a) DME (b) MME (c) DCSE (d) CME

Figure 3.4: Spectrogram Estimation Methods

29

based models are trained to learn a binary or soft mask M̂mask that is multiplied with

Mmag to obtain the estimated magnitude spectrogram T̂mag of the target source (that

is, T̂mag = M̂mask ⊙Mmag) as illustrated in Figure 3.4. (b). To obtain the separated

target signal, it combines T̂mag with Mphase to construct the complex-valued spectrogram

T̂complex and apply iSTFT to T̂complex for the target signal reconstruction. The Mean

Square Error (MSE) (, or Mean Absolute Error (MAE)) between T̂mag and the ground-

truth target magnitude spectrogram Tmag is usually used for its loss function. The U-Net

introduced in section 3.2 uses this method for target spectrogram estimation.

3.3.3 Direct Complex-valued Spectrogram Estimation

In DME and MME, the phase Mphase of the mixture is reused to generate the target

signal. However, Mphase is usually not the same as the phase Tphase of the target signal.

Thus, magnitude estimation methods usually perform poorer than phase-aware estimation

methods [63, 52, 6] due to the loss of phase information. For phase-aware estimation, some

methods [63, 52] estimate the phase as well as the magnitude of the target while other

[11, 35] methods directly estimate the target complex-valued spectrogram. The latter

method is called Direct Complex-valued Spectrogram Estimation (DCSE). The DCSE

method takes the complex-valued spectrogram Mcomplex of a mixture signal and directly

estimates the complex-valued spectrogram T̂complex of the target, as shown in Figure 3.4.

Models are trained to reduce the MSE between T̂complex and the ground-truth target

spectrogram Tcomplex.

When developing a DCSE model, it is natural to adopt Deep Complex Networks

(DCNs) [56], which have building blocks with complex-valued parameters such as complex

convolutions and complex-valued activation functions, because the input and correspond-

ing output are complex-valued. Alternatively, conventional real-valued neural networks

can be used by viewing the real and the imaginary parts of a spectrogram as separate

channels. This approach is called Complex-as-Channels (CaC) throughout the rest of the

paper.

30

3.3.4 Complex Mask Estimation

The Complex Mask Estimation (CME) method is a soft masking version of the DCSE

method. It predicts a mask M̂mask instead of Tcomplex. CME-based models generate

the target complex spectrogram Tcomplex by multiplying M̂mask by Mcomplex (that is,

T̂complex = M̂mask ⊙Mcomplex) as described in Figure 3.4. (d)). For the last activation

to obtain M̂mask , it can use tanh, sigmoid or more advanced activation functions for

complex-valued features such as MODReLU [2], CReLU[56], and zReLU [13].

31

3.4 Baseline U-Net Architecture

This section presents a generalized U-Net architecture for spectrogram-based source

separation, which is shared by models in section 3.6. The baseline U-Net estimates the

spectrogram T̂ from a given spectrogram M of the mixture. For the sake of simplicity, it is

assumed that M and T̂ are complex-valued spectrograms unless it is explicitly mentioned

that they are magnitude spectrograms. Also, it is assumed that the baseline model directly

estimates target spectrograms instead of masks.

As shown in Figure 3.5, the baseline U-Net consists of an encoder and decoder: the

encoder embeds M into a down-sized representation, and the decoder takes it and esti-

mates target spectrogram T̂ . It has down-sampling layers with stride two and up-sampling

layers, which double the scale of an input tensor. The number of down-sampling layers

and up-sampling layers are the same, as in the conventional U-Net architecture [42]. It

has skip connections, which are the most important components in U-Net-like structures

[42, 1, 65, 54, 53]. Each of them connects an internal feature map in the encoder to the

corresponding feature map in the decoder with the same scale. It enables the U-Net to

effectively recover fine-grained details of the spectrogram during up-sampling.

Figure 3.5: Baseline U-Net Architecture

32

As shown in Figure 3.5, the baseline network has several intermediate blocks. For the

sake of simplicity, it is assumed that each intermediate block maps an input tensor to an

equally-sized tensor, possibly with a different number of channels. In other words, the

size of an internal tensor is changeable only with down-sampling layers and up-sampling

layers. Exceptionally, it uses two additional convolution layers that slightly change the

size of tensors. It uses them to control the number of channels and make the number of

frequency bins (i.e., the height of spectrogram in Figure 3.3) even-numbered.

Before describing these two convolutions, some additional notations are introduced as

follows. The input of the l-th intermediate block is denoted by X(l−1), and the output by

X(l). The size of X(l−1) is denoted by c
(l)
in × T (l) ×F (l), where c

(l)
in represents the number

of channels and and T (l) × F (l) represents the size of the spectrogram-like tensor. Also,

the size of X(l) is denoted by c
(l)
out × T (l) × F (l), where c

(l)
out is the number of channels.

Using these notations, the input of the first block is X(0), and its size is c
(1)
in ×T (1)×F (1).

As illustrated in Figure 3.5, the first convolution layer, which takes M as input, generates

X(0). It is a 1× 2 2-D convolution with c
(1)
in output channels, followed by ReLU [12]. c

(1)
in

is set to be 24 to increase the number of internal channels. The final convolution layer is

a 1×2 convolution with c output channels, where c is the number of channels of the input

spectrogram. The parameter c
(1)
in is empirically set to be 24 in the experiments. Models

with smaller c
(1)
in (e.g., 12) are trained faster, but usually perform inferior than models

with larger size of c
(1)
in .

Since there are multiple options for intermediate blocks, one can implement various

variants of U-Nets for dedicated source separation based on this architecture. For example,

one can design a fully convolutional U-Net by employing a block of densely connected 2-D

Convolutions used in [54, 53], called Time-Frequency Convolutions (TFC) block. A TFC

block extracts features by considering both the time and the frequency dimensions. It

treats spectrogram-like features as image features. The baseline intermediate, TFC, is

introduced as follows:

33

A baseline intermediate block: Time-Frequency Convolutions

The Time-Frequency Convolutions (TFC) is a block of densely connected 2-D CNNs,

as shown in Figure 3.6. This dense block is comprised of densely connected composite

layers, where each layer is defined as three consecutive operations: 2-D convolution, BN

[17], and ReLU [12]. It is applied to the spectrogram-like input representation in the time-

frequency domain. Every convolution layer in a dense block has kernels of size (kF , kT).

Its 2-D filters are trained to capture features along both frequency and temporal axes

jointly.

Figure 3.6: Time-Frequency Convolutions

34

3.5 Frequency Transformation Block

Some existing models based on the U-Net architecture use CNNs (e.g., [3]) for inter-

mediate blocks to extract timbre features of the target source. However, the authors of

[63] reported that conventional CNN kernels are limited for this task. They observed that

long-range correlations exist along the frequency axis in the spectrogram of voice signals,

which Fully-connected Neural Networks (FCNs) can efficiently capture. They proposed

a model called Phasen for speech enhancement, which uses the Frequency Transforma-

tion Block (FTB) that has a single-layered FCN without bias. This FCN is applied to

each frame of the internal representation in a time-distributed manner. Capturing har-

monic correlation with TFBs, Phasen achieved the state-of-the-art speech enhancement

performance.

Inspired by TFB, this section proposes the Time-Distributed Fully connected network

(TDF) block, applied to a single frame of a spectrogram-like feature map. It aims to

extract time-independent features that help source separation without using inter-frame

operations. This section also proposes a block that combines TFC and TDF, called TFC-

TDF block.

Time-Distributed Fully-connected networks

As illustrated in Figure 3.7, a TDF block is applied to each channel of each frame

separately and identically.

Figure 3.7: Time-Distributed Fully-connected networks

Suppose that the l-th intermediate block in the U-Net structure takes input X(l−1) into

35

an output X(l). As shown in Figure 3.7, a fully-connected network is applied separately

and identically to each frame (i.e., X(l−1)[i, j, :]) in order to transform an input tensor in a

time-distributed fashion. While an FTB of Phasen [63] is single-layered, a TDF block can

be either single- or multi-layered. Each layer is defined as consecutive operations: a fully-

connected layer, Batch Norm (BN), and ReLU. If it is multi-layered, then each internal

layer maps an input to the hidden feature space, and its final layer maps the internal

vector to RF (l)

. The number of hidden units is ⌊F (l)/bn⌋, where the bottleneck factor

is denoted by bf . The number of parameters can be reduced if a TDF has a bottleneck

factor of bf > 2.

Time-Frequency Convolutions with TDF

Another proposed block is the Time-Frequency Convolutions with Time-Distributed

Fully-connected networks (TFC-TDF) block. It utilizes two different blocks inside: a

TFC block and a TDF block. Figure 3.8 describes the structure of a TFC-TDF block. It

first maps the input X(l−1) to a same-sized representation with c
(l)
out channels by applying

the TFC block. Then the TDF block is applied to the dense block output. A residual

connection is also added for efficient gradient flow.

Figure 3.8: Time-Frequency Convolutions with TDF

Phasen [63] has shown that inserting time-distributed operations into intermediate

blocks can improve speech enhancement performance. Section 3.6 validates whether it

also works for music source separation or not, using MUSDB18 [41] benchmark.

36

3.6 Experiment

This section evaluates U-Nets with different types of blocks based on different estima-

tion methods mentioned above. Section 3.6.1 presents the experimental setup including

dastaset and model configurations. Section 3.6.2 compares four different spectrogram

estimation methods introduced in section 3.3. Section 3.6.3 empirically validates the as-

sumption: “Injecting frequency transformation blocks into a standard U-Net architecture

can significantly improve the separation performance.” The proposed architecture is com-

pared with other state-of-the-art models in section 3.6.4. Ablation studies are presented

in section 3.6.5. Section 3.6.6 presents a novel task to visualize artifacts created by DSCE

methods.

3.6.1 Setup

Dataset

In this section, models are evaluated for the multi-channeled Musical Source Separation

task on the MUSDB18 [41] dataset. The train and test datasets of MUSDB18 have 100

and 50 musical tracks respectively, all stereo and sampled at 44100 Hz. Each track file

consists of the mixture and four source audios: ‘vocals,’ ‘drums,’ ‘bass’ and ‘other.’

The default validation set (14 tracks) for validation is used as defined in the musdb

package. Thus 86 tracks is used as training items in the training phase. Data augmentation

[57] was applied to obtain mixture audio clips comprised of source audio clips from different

tracks.

Model Configurations

U-Nets with different blocks based on different estimation methods are implemented

for experiments. Each model is based on the U-Net architecture (section 3.4). c
(1)
in , the

number of internal channels is set to 24, as mentioned in section 3.4. Each model uses a

single type of block for its intermediate blocks. For STFT parameters, an FFT window

size of 2048 and a hop size of 1024 for STFT are used. However, a larger window size is

37

used in some models for a fair comparison with state-of-the-art methods. In other words,

an FFT window size of 4096 and a hop size of 1024 are used for large models.

Each model is trained and evaluated for separating a single instrument. They are

individual models and each does not share any parameters with others. Models in section

3.6.2 contains 7 intermediate blocks, and models in section 3.6.4 contains 9 intermediate

blocks. Each TFC block has 5 convolution layers with 3× 3 kernels and growth rate [16]

of 24. Each TDF has a bottleneck factor of 16.

Weights of each model were optimized with RMSprop [14] with learning rate lr ∈

[0.0005, 0.001] depending on model depth. Each model is trained to minimize the mean

square error between T̂ and T. Mean Squared Error (MSE) between target and estimated

signal (waveform) as the validation metric for validation is measured in each epoch for

validation.

The official evaluation tool1 is used, which is provided by the organizers of the SiSEC

2018 [50] to measure Source-to-Distortion Ratio (SDR) [59]. The evaluation metric is the

median SDR value over all the test set tracks to obtain the overall SDR performance for

each run, as done in the SiSEC2018. The average of ‘median SDR values’ over three runs

for each model is reported for each model.

3.6.2 Comparison of Spectrogram Estimation Methods

Table 3.1 summarizes the SDR performance of models based on four different spec-

trogram estimation methods introduced in section 3.3. It is observable that the SDR

performance of DCSE models is higher than that of the other models by large margins.

Thus, the DCSE method is selected for the comparison with state-of-the-art models in

section 3.6.4. Both CME methods were slightly inferior to the DCSE method, and there

were no significant SDR differences between the CME with sigmoid function (denoted by

CME-σ) and the CME with hyperbolic tangent (denoted by CME-tanh). Three complex-

valued methods usually performed better than magnitude estimation models for every

instrument. It means that considering phase information is essential for separation qual-

1https://github.com/sigsep/sigsep-mus-eval

38

ity.

esimation vocals drums bass other mean

DME 6.01 4.17 3.98 4.16 4.58

MME 5.28 3.35 3.96 4.45 4.26

CME-σ 7.04 4.88 4.99 4.51 5.35

CME-tanh 6.89 4.90 5.05 4.55 5.35

DCSE 7.05 5.38 5.62 4.61 5.66

Table 3.1: Comparison of TFC-TDF-U-Nets on spectrogram estimation methods: Source-

to-Distortion Ratio (SDR)

The SIR performance and ISR performance show a similar trend, as shown in Table 3.3

and Table 3.2. The DCSE method usually performs better than the other model except

for few cases, but only a small margin.

framework vocals drums bass other ALL

DME 12.68 7.92 8.68 7.79 9.27

MME 13.61 8.06 9.23 8.02 9.73

CME-σ 13.08 7.78 7.56 7.53 8.99

CME-tanh 12.75 7.68 9.01 7.52 9.24

DCSE 13.17 9.27 9.95 8.28 10.17

Table 3.2: Comparison of TFC-TDF-U-Nets on spectrogram estimation methods: Image

to Spatial Distortion Ratio (ISR)

Compared to SDR and SIR, the SAR performance shows a different trend: the DCSE

method does not always have higher SAR. It might be because direct estimation methods

suffer from many artifacts due to their unbounded nature. Such artifacts is visulalized in

section 3.6.6 for an evidence.

39

framework vocals drums bass other mean

DME 11.51 7.97 4.87 6.46 7.70

MME 9.12 6.90 5.57 6.58 7.04

CME-σ 13.60 10.55 8.68 9.50 10.58

CME-tanh 13.53 12.20 8.89 8.58 10.80

DCSE 14.38 11.97 11.36 9.97 11.92

Table 3.3: Comparison of TFC-TDF-U-Nets on spectrogram estimation methods: Source-

to-Interferences Ratio (SIR)

framework vocals drums bass other mean

DME 6.16 4.30 3.67 4.48 4.65

MME 6.02 4.74 3.63 5.04 4.86

CME-σ 6.96 4.37 5.63 3.95 5.23

CME-tanh 6.70 4.37 4.25 4.01 4.83

DCSE 6.96 5.13 4.82 3.92 5.20

Table 3.4: Comparison of TFC-TDF-U-Nets on spectrogram estimation methods: Sources-

to-Artifacts Ratio (SAR)

40

3.6.3 Injecting frequency transformation blocks into a standard U-Net

architecture

This section validates the assumption: “Injecting frequency transformation blocks into

a standard U-Net architecture can significantly improve the separation performance.” To

verify it, DCSE-based U-Nets with different time-frequency blocks were implemented for

singing voice separation tasks. All models are trained on 3 seconds (128 STFT frames)

of music. Since the number of frequency bins is much larger than the number of frames,

models with more than 7 neural transforms use both 2×2 or 2×1 sized down/up-sampling

layers to scale the frequency axis more than 3 times while maintaining the number of scales

in the temporal axis to 3. Exceptionally, different down/up-sampling strategies were used

to investigate the effect of down/up-sampling in the temporal axis.

model sampling # blocks # params SDR

TFC O 17 1.56M 6.89

TFC X 17 1.56M 6.75

TFC-TDF O 7 0.99M 7.07

TFC-TDF O 17 1.93M 7.12

Table 3.5: Evaluation results of Time-Frequency Blocks.

Every TFC block is set to have 5 convolution layers with kernel size 3×3. The growth

rate is set to be 24. By using this TFC block configuration, a TFC-based U-Net is trained

and the result is in the first row of Table 3.5.

The model in the second row is set to use different down/up-sampling layers to investi-

gate the effect of down/up-sampling in the temporal axis. Every kernel size used in each

down/up-sampling layer of this model is 2 × 1 to preserve the temporal resolution while

scaling frequency resolution.

The first two rows of Table 3.5 summarize the experiment results of two TFC-based

models. The model that preserves the temporal resolution (i.e., the second row) was

slightly inferior to the other model. It is also notable that the U-Nets with TFC blocks

41

achieve comparable results with state-of-the-art methods in 3.6.4, even using lower fre-

quency resolution.

The third and fourth rows of Table 3.5 shows promising results regarding the U-Nets

with TFC-TDF blocks. The same TFC setting above is used, and bf is set to 16 for each

TDF. The 7-blocked U-Net with TFC-TDFs outperforms the other 17-blocked models

with nearly twice as less number of layers. These results show that inserting TDFs

into intermediate blocks can be helpful for music source separation as well as for Speech

Enhancement [63]. Also, results show that it is achievable with fewer parameters by using

FCNs with a bottleneck layer.

3.6.4 Comparison with State-of-the-art Models

Table 3.6 shows the SDR performance of state-of-the-art models along with ours on

the MUSDB dataset: (MMDenseLSTM [53], D3Net [55], Meta-TasNet [43], UMX [51],

DGRU-DGConv [22], Demucs [6], and Conv-Tasnet [26, 6]). For a fair comparison, the

size of networks is enlarged (see section 3.6.1). The proposed model is a U-Net with nine

TFC-TDF blocks based on DCSE method, which achieves the best SDR performance on

‘vocals’ and ‘other’ even when compared to models that use extra training data and out-

performs models without extra data for bass separation. In the case of drums and others,

it shows comparable performance to other methods. Also, it is worth noting that previ-

ous spectrogram-based models adopt Multi-channel Wiener Filtering as a post-processing

method to enhance SDR further, while ours directly use the signal reconstruction output

without such post-processing.

3.6.5 Ablation Study

This section shows how a U-Net model with TFC-TDF blocks works. Table 3.7 shows

the performance of three different singing voice separation models on the MUSDB bench-

mark. One of them (the first row in the table) is the reference model that achieves the

state-of-the-art SDR performance (7.98 dB). The other models have different configura-

tions.

42

model w2w extra vocals drums bass other

Demucs [6] ✓ ✗ 6.84 6.86 7.01 4.42

Conv-Tasnet [6, 26] ✓ ✗ 6.43 6.02 6.20 4.27

Meta-TasNet [43] ✓ ✗ 6.40 5.91 5.58 4.19

UMX [51] ✗ ✗ 6.32 5.73 5.23 4.02

DGRU-DGConv [22] ✗ ✗ 6.85 5.85 4.86 4.65

MMDenseLSTM [53] ✗ ✗ 6.60 6.43 5.16 4.15

D3Net [55] ✗ ✗ 7.24 7.01 5.25 4.53

Proposed [I] ✗ ✗ 7.98 ± .07 6.11 ± .13 5.94 ± .08 5.02 ± .07

Demucs [6] ✓ 1.5k 7.29 7.58 7.60 4.69

Conv-Tasnet [26, 6] ✓ 150 6.74 7.11 7.00 4.44

MMDenseLSTM [53] ✗ 804 7.16 6.81 5.4 4.8

D3Net [55] ✗ 1.5k 7.80 7.36 6.20 5.37

Table 3.6: Comparison with state-of-the-art models on MUSDB dataset

TFC-TDF block VS TFC block

The TDF block captures long-ranged patterns along the frequency axis. Replacing

each TFC-TDF block with a simple TFC block makes the resulting model cannot exploit

such frequency correlation feature enhancement. The last row in Table 3.7 shows the

performance of the resulting model. Its low SDR indicates that using TDF with TFC block

in multi-scales significantly improves the quality of singing voice separation. However, Its

SDR is comparable to that of existing spectrogram-based models unless it is not trained

with an extra dataset.

Bottleneck Layers in TDFs

The second row in Table 3.7 shows the SDR performance of TFC-TDF-U-Net architec-

ture without bottleneck layers in TDFs. Its performance is slightly lower than that of the

reference model. However, it is worthy to say a large amount of the number of parameters

43

block bottleneck # params SDR

TFC-TDF ✓ 2.24M 7.98

TFC-TDF ✗ 12.00M 7.72

TFC-TDF (DME) ✓ 2.24M 7.24

TFC N/A 0.83M 6.60

Table 3.7: Ablation Study of TFC-TDF-U-Nets (Vocals)

(a) vocals (b) bass (c) drums (d) other

(e) Singing voice in multi-scales

Figure 3.9: Weight Visualization in single-layered TDFs

44

can be reduced in each TDFs: about (bf)2/2 times smaller than a single-layered TDF,

where bf is a bottleneck factor.

Despite its low SDR, single-layered TDFs provide us insight into how it enhances

frequency correlation features. Inspired by [63], we also visualized the weight matrix after

training, as shown in Figure 3.9. Figure 3.9 (a),(b),(c) and (d) visualize the weight matrix

of the first TDFs for each model. Each matrix is optimized to enhance timbre features for

its instrument by capturing different frequency dependencies observed along the frequency

axis. Also, we can observe that each TDF still performs well in multi-scales.

3.6.6 Silent Mixture Waveform Separation

(a) output signal (DCSE) (b) output signal (CME)

(c) magnitude (DCSE) (d) magnitude (CME)

Figure 3.10: Result for Silent Mixture Signal Separation Task

This experiment feeds a silent mixture signal (i.e., a zero-valued signal) to networks

and visualizes their outputs. The desirable output is also a silent signal. The output of

the CME-based network is silent, as shown in Figure 3.10 (b) and (d). However, it turns

out that DCSE-based TFC-TDF-U-Net generates a noise signal as shown in Figure 3.10

(a). Models without bias parameters (for TDFs and the final convolution) also generated

such artifacts. Despite its high SDR performance, we could such very small artifacts

45

constantly arising throughout playing a separated track.

Its magnitude spectrogram has none-zero TF bins as illustrated in Figure 3.10 (c).

Since Mcomplex is zero-valued T̂complex = M̂mask⊙Mcomplex is also zero-valued in the CME

method. Similar observation was reported in [40], where they fed a wight noise signal to

neural networks with different up-sampling methods and visualized the spectrogram of

the output signal.

46

3.7 Discussion

This section validates the following assumption: Injecting frequency transformation

blocks into a standard U-Net architecture can significantly improve the separation perfor-

mance. It also provides resuable insights as follows:

• Using down/up-sampling is important for CNN-based blocks, especially in the fre-

quency dimension.

• Injecting a time-distributed block to a time-frequency block can improve SDR.

• U-NET with TFC-TDFs shows promising results for the separation of other sources

as well as vocals.

• It is possible to reduce parameters without performance degradation by using bot-

tlenecked TDFs.

• Although its SDR performance is high, DCSE with TFC-TDF-U-Net suffers from

many artifacts.

• Visualization of artifacts is provided with a simple task called silent mixture wave-

form separation.

This work is not limited to the U-Net-architecture nor music source separation. Blocks

can be used as core components in more complex architectures as well. We can use different

types of blocks for a single model, meaning that much space remains for improvement.

The observations give reusable insights when one designs a source separation model.

For example, one can use the artifact spectrogram of silent mixture waveform separation

(Figure 3.10) to cancel out constant artifacts generated by DCSE-based models. Also,

they are reusable when one designs spectrogram-based models for other Music Informa-

tion Retrieval (MIR) tasks. For instance, one can adopt the TFC-TDF block for music

generation since it can model complex frequency correlations such as overtones with the

aid of TDFs.

47

3.8 Conclusion

This section verifies that injecting frequency transformation blocks into a standard U-

Net architecture can significantly improve the separation performance. The experiments

provide abundant material for future works by comparing several U-Nets with different

types of blocks. Also, the proposed models outperform state-of-the-art methods on several

MUSDB18 tasks. Empirical justification is given to explain how it works with an ablation

study. Future work can extend this model to utilize attention networks to model long-term

dependencies observed in both the frequency and the temporal axis. It is also revealed

that direct estimation methods might suffer from many artifacts by examining the silent

mixture waveform separation task. For future work, one can develop the DCSE method

with smaller artifacts.

48

Chapter 4

Frequency Transformation for

Conditioned Source Separation

This chapter aims to extend the TDF block proposed in chapter 3 for dedicated source

separation to conditioned source separation. This chapter adopts the Conditioned-U-

Net (CUNet) [32] as a baseline for conditioned source separation. Although the prior

experiment (see section 4.6) indicates that it improves the performance to insert TDF

blocks to a CUNet simply, it does not inherit the spirit of the TDF block, with which a

TDF block is trained to capture frequency-to-frequency dependencies of the target source.

By inheriting the property mentioned above, this chapter proposes the Latent Source-

Attentive Frequency Transformation (LaSAFT), a novel frequency transformation block

that can capture instrument-dependent frequency patterns by exploiting the scaled dot-

product attention [58]. This chapter also proposes the Gated Point-wise Convolutional

Modulation (GPoCM), a new modulation that extends the Feature-wise Linear Modu-

lation (FiLM) [39]. The proposed CUNet with LaSAFT and GPoCMs outperforms the

existing methods on several MUSDB18 [41] tasks. The ablation study shows that adding

LaSAFT or replacing FiLMs with GPoCMs improves separation performance.

49

The rest of this chapter is organized as follows. Section 4.1 defines the conditioned

source separation task and section 4.2 defines a latent source which is the key concept

used in this thesis. Section 4.3 summarizes the baseline CUNet architecture. Section 4.4

proposes the LaSAFT block and section 4.5 proposes the PoCM mechanism to modulate

internal features. The experimental results are summarized in section 4.6.

4.1 Conditioned Models for Audio Source Separation

Many state-of-the-art models based on neural networks for audio source separation are

dedicated models. However, this approach forces us to train an individual model for each

instrument. Moreover, trained models cannot use the commonalities between different

instruments. A simple extension to multi-source separation is to generate several outputs

at once, as shown in Figure 4.1 (a). For example, the model proposed in [22] generates

multiple outputs at once. Although it shows promising results, this approach still has

a scaling issue: the number of heads increases as the number of instruments increases,

leading to (1) performance degradation caused by the shared bottleneck, (2) inefficient

memory usage.

Alternatively, it is possible to adopting conditioning learning [32, 43] for muti-source

separation. A conditioned model separates different instruments with the aid of the control

mechanism, as illustrated in Figure 4.1 (b). Since it does not need a multi-head output

layer, there is no shared bottleneck. For example, the Conditioned-U-Net (CUNet) [32]

extends the U-Net [42, 1] by exploiting Feature-wise Linear Modulation (FiLM) [39]. It

takes as input the spectrogram of a mixture and a control vector that indicates which

instrument a user wants to separate and outputs the estimated spectrogram of the target

instrument.

50

(a) multi-head models

(b) conditioned models

Figure 4.1: Multi Source Separation Task

51

4.2 Latent Source Analysis for Conditioned Separation

Recent spectrogram-based methods [63] employed Frequency Transformation (FT)

blocks to capture frequency patterns as discussed in chapter 3. Capturing frequency-to-

frequency dependencies of the target source with FT layers, neural networks with these

FT blocks can show outstanding performance on several source separation tasks. For

example, chapter 3 shows that it is possible to improve source separation performance by

inserting TDFs to a conventional fully 2-d convolutional U-Net, achieving state-of-the-art

SDRs on two MUSDB18 [41] tasks, namely, ‘vocals’ and ‘other’ separation tasks.

However, it was above their expectation for the authors of Publication I that the U-

Net with TFC-TDF blocks performs well in the ‘other’ separation task. A TDF block is

expected to learn frequency patterns of a specific source, but there are many instruments

in ‘other’ source in MUSDB18 [41] including piano, guitar, organ, brass, and synthesizer.

This result indicates that a TDF block can also improve the performance of a U-Net

by capturing the frequency patterns observed across multiple instruments. Similarly,

inserting TDFs into a CUNet also enhances the source separation quality, as discussed in

section 4.6.

On top of this observation, the motivation of this work is to use multiple TDFs for

multiple latent sources. The concept of latent source has been introduced in recent source

separation methods [60]. [60] trained their model to separate the given input into a

variable number of latent sources, which can be remixed to approximate the original

mixture. By carefully taking the weighted sum of separated latent sources, extracting the

desired source, such as clean speech, is possible. The model proposed in this chapter also

uses the concept of latent source for conditioned source separation.

In this chapter, a latent source is defined as a concept that deals with a more detailed

aspect of acoustic features than a symbolic-level source (e.g., ‘vocals’). Humans are used

to categorizing symbolic-level classes of sources, but there are many sub-classes in a single

class, as mentioned in the example of ‘other.’ Latent sources are helpful, especially for such

complex classes, to which there are various sub-classes belong. On top of this concept, this

chapter proposes a novel frequency transformation block for conditioned source separation,

52

assuming that a weighted sum of latent sources can represent a source.

4.3 Baseline Architecture: Conditioned U-Net

The baseline is a generalized CUNet [32] architecture. It consists of (1) the Generic

U-Net and (2) the Condition Generator.

1. The Generic U-Net is a U-Net [42] which takes a mixture spectrogram as input

and outputs the estimated target spectrogram. It applies FiLM layers to modulate

intermediate features with condition parameters generated by the condition gener-

ator. The

2. Condition Generator takes as input a condition vector and generates condition

parameters. A condition vector is a one-hot encoding vector that specifies which

instrument we want to separate.

Figure 4.2: The baseline architecture

Subsection 4.3.1 describes the generic U-Net, which is conditioned on external infor-

mation. Subsection 4.3.2 describes the condition generator in detail.

53

4.3.1 The Generic U-Net

The baseline architecture adopts the U-Net used in section 3.4 as a backbone structure.

As shown in the left part of Figure 4.2, it consists of an encoder and a decoder: the

encoder transforms the input mixture spectrogram M into a downsized spectrogram-like

representation. The decoder takes it and returns the estimated target spectrogram T̂ . It

should be noted that spectrogram M and T̂ are complex-valued adopting the Complex-

as-Channel (CaC) separation method described in section 3.3.3. Recall that real and

imaginary parts are viewed as separate channels in CaC. Thus, if the original mixture

waveform is c-channeled (i.e., c = 2 for stereo), then the number of channels of M and T̂

is (2c).

There are four components in the structure: 1 X 2 Convolution Layers, Intermediate

blocks, Down/Up-sampling layers, and skip connections. 1 X 2 Convolution Layers are

used for adjusting the number of channels. Since the target spectrogram is complex-

valued, there is no activation function. It is inherited from the U-Net of 3.4. An Inter-

mediate Block transforms an input spectrogram-like tensor into an equally-sized tensor.

For each block in the baseline, the baseline uses a Time-Frequency Convolution (TFC)

described in 3.4, a block of densely connected 2-D convolution layers [16]. L denotes the

number of intermediate blocks in the encoder. The decoder also has L blocks. There is

an additional block between them. A Down/Up-sampling Layer halves/doubles the scale

of an input tensor, which is implemented with a strided/transposed-convolution. Skip

Connections concatenate output feature maps of the same scale between the encoder and

the decoder. They help the U-Net recover fine-grained details of the target.

The only different part between this U-Net and that of section 3.4 is that this U-Net

has FiLM layers in the decoder for condition-aware modulation. Unlike in the U-Net

baseline of the previous section, it modulates internal features in the decoder by applying

FiLM layers, as shown in the right part in Figure 4.2. Applying a FiLM is an effective

way to condition a network, which applies the following operation to intermediate feature

maps.

54

A Film layer is defined as follows:

FiLM(Xi
c|γi

c, β
i
c) = γi

c ·Xi
c + βi

c (4.1)

where γi
c and βi

c are parameters generated by the condition generator, and Xi is the

output of the ith decoder’s intermediate block, whose subscript refers to the cth channel

of X as shown in Figure 4.3.

Figure 4.3: FiLM layers

4.3.2 The Condition Generator

The condition generator is a network that predicts condition parameters γ = (γ1
1 , ..., γ

L
C̄

)

and β = (β1
1 , ..., β

L
C̄

). The proposed condition generator is similar to ‘Fully-Connected Em-

bedding’ of the CUNet [32] except for the usage of the embedding layer. It takes as input

the one-hot encoding vector z ∈ {0, 1}|I| that specifies which one we want to separate

among |I| instruments. The condition generator projects z into ez ∈ RE , the embedding

of the target instrument, where E is the dimension of the embedding space.

It then applies a series of fully connected (i.e., linear or dense) layers, which doubles

the dimension. We use ReLU [12] as the activation function for each layer and apply a

dropout with p = 0.5 followed by a Batch Normalization (BN) [17] to the output of each

last two layers. The last hidden units are fed to two fully-connected layers to predict

γ = (γ1
1 , ..., γ

L
C̄

) ∈ R|γ| and β = (β1
1 , ..., β

L
C̄

) ∈ R|β|, where |γ| = |β| = C̄L.

55

Figure 4.4: The condition generator

4.4 Frequency Transformation for Conditioned Separation

In this section, naive approaches are introduced to extend the frequency transformation

block to conditioned source separation. Then, the Latent Source Attentive Frequency

Transformation (LaSAFT) method is proposed.

4.4.1 Naive Approaches

Injecting TDFs to the baseline is a very straightforward approach to extend the TDF

block to conditioned source separation. However, it does improve the SDR performance by

capturing the common frequency patterns observed across all instruments as mentioned

before (see section 4.6).

An alternative approach is to use multiple instances with if-then-else branches to con-

trol data flows. For example, suppose that there are four sources users want to separate.

Then, the CUNet with this naive approach creates four instances of TDFs in each inter-

mediate block. Assuming each TDF corresponds to a specific source and the data flow

is controllable with the if-then-else branch, it is trivial to implement a naive extension of

frequency transformation to conditioned source separation.

However, these approaches do not inherit the spirit of TDF. The following subsection

proposes a delicate frequency transformation method for conditioned source separation.

56

4.4.2 LaSAFT: Latent Source-attentive Frequency Transformation Blocks

This subsection proposes the Latent Source Attentive Frequency Transformation (LaSAFT)

by adopting the scaled dot-product attention mechanism [58]. Compared to the structure

of the existing TDF shown in Figure 4.5, a LaSAFT block has a complex structure, as

illustrated in Figure 4.6. Figure 4.6 describes the key idea of LaSAFT, which is to use

multiple TDF blocks to analyze various latent sources and attentively aggregate their

results concerning the given query.

Figure 4.5: TDF: Time Distributed Fully Connected Layers

Figure 4.6: Conceptual view of a LaSAFT block

Technically, LaSAFT first duplicates |IL| copies of the second layer of the TDF, as

shown in the right side of Figure 4.7, where |IL| refers to the number of latent instru-

ments. |IL| is not necessarily the same as I for the sake of flexibility. For the given

frame V ∈ RF , it obtains the |IL| latent instrument-dependent frequency-to-frequency

correlations, denoted by V ′ ∈ RF×|IL|. It uses components on the left side of Figure 4.7

57

to determine how much each latent source should be attended. LaSAFT takes as input

the instrument embedding ze ∈ R1×E . It has a learnable weight matrix K ∈ R|IL|×dk ,

where the dimension of each instrument’s hidden representation is denoted by dk. By

applying a linear layer of size dk to ze, it obtain Q ∈ Rdk . It finally computes the output

of the LaSAFT as follows:

Attention(Q,K, V ′) = softmax(
QKT

√
dk

)V ′ (4.2)

Figure 4.7: Latent Source Attentive Frequency Transformation

A LaSAFT is applied after each TFC in the encoder and after each Film/GPoCM layer

in the decoder. There is another skip connection for the final output of each block (i.e.,

it outputs X ′ + lasaft(X ′), where X ′ is an input of the lasaft).

58

4.5 Feature Modulation

The conventional CUNet [32] uses FiLM layers to modulate internal features for the

given condition. FiLM operations used in [32] are efficient and straightforward to im-

plement but might be limited in terms of expressive power because they do not have

inter-channel operations. This section proposes novel feature modulation methods called

PoCM and GPoCM, which have inter-channel computation.

Subsection 4.5.1 proposes PoCM and subsection 4.5.2 introduced the gated version of

PoCM, called GPoCM.

4.5.1 PoCM: Point-wise Convolutional Modulation

The PoCM is an extension of FiLM. While FiLM does not have inter-channel opera-

tions, PoCM has them as follows:

PoCM(Xi
c|ωi

c, β
i
c) = βi

c +
∑
j

ωi
cj ·Xi

j (4.3)

where ωi
c = (ωi

c1..., ω
i
cC̄

) and βi
c are condition parameters, and Xi is the output of the

ith decoder’s intermediate block, as shown in Figure 4.8. Since this channel-wise linear

combination can also be viewed as a point-wise convolution, it is named PoCM. With

inter-channel operations, PoCM can modulate features more flexibly and expressively

than FiLM.

4.5.2 GPoCM: Gated Point-wise Convolutional Modulation

In the decoder, the following ‘Gated PoCM (GPoCM)’ is used instead of PoCM. Al-

though substituting each FiLM with a raw PoCM improves the performance, GPoCMs

also worked and were more robust than PoCM because the output generated by GPoCM

is bounded. Also, GPoCM can easily make the output near zero-valued, which is natural

and intuitive in source separation tasks where near-zero internal features are expected to

generate near-silent output signals.

59

Figure 4.8: PoCM layers

GPoCm is defined as follows:

GPoCM(Xi
c|ωi

c, β
i
c) = σ(PoCM(Xi

c|ωi
c, β

i
c))⊙Xi

c (4.4)

where σ is a sigmoid and ⊙ means the Hadamard product.

60

4.6 Experiments

This section validates the architectural choices with an ablation study. It also compares

the performance of the proposed model with other state-of-the-art conditioned source

separation models.

4.6.1 Experiment Setup

The same dataset was used for the experiment as section 3.6, MUSDB18 dataset [41].

It contains 86 tracks for training, 14 tracks for validation, and 50 tracks for the test. Each

track is stereo, sampled at 44100 Hz, consisting of the mixture and four sources (i.e.,

|I|=4): ‘vocals,’ ‘drums,’ ‘bass,’ and ‘other.’

Models were trained using Adam [18] with learning rate lr ∈ {0.0005, 0.001} depending

on model depth. Each model is trained to minimize the mean squared error between the

ground-truth STFT output and the estimated. For validation, the mean absolute error

of the target signal and the estimated was measured again. Data augmentation [57] was

applied on the fly to obtain mixture clips comprised of sources from different tracks.

For the evaluation metric, Source-to-Distortion Ratio (SDR) [59] was used by using

the official tool1 for MUSDB18. The median SDR value over all the test set tracks for

each run is obtained, and the mean SDR over three runs was reported in tables. More

details are available online2.

4.6.2 Results

An ablation study is provided in this subsection to validate the effectiveness of the

proposed methods compared with the baseline. In every model in Table 4.1, the config-

uration of the STFT parameters is as follows: FFT window size of 2048 and hop size of

1024 for spectrogram estimation. The configuration of the baseline (FiLM CUNET) is

as follows: we use 7-blocked CUNet (i.e., L = 3), and we use a TFC for each block with

the same configuration used in Publication I, where 5 convolution layers with kernel size

1https://github.com/sigsep/sigsep-mus-eval
2https://github.com/ws-choi/Conditioned-Source-Separation-LaSAFT

61

3 × 3 are densely connected, and the growth rate [16] is set to be 24. C̄ is set to be 24

as in Publication I. The dimensionality of the embedding space of conditions (i.e., RE) is

set to be 32. |IL|, the number of latent instruments is set to 6.

In Table 4.1, it is observable that a considerable performance degradation when em-

ploying the existing method (FiLM CUNet), compared to the dedicated U-Net, which is

trained separately for each instrument with the same configuration. Injecting TDF blocks

to the baseline (FiLM CUNet + TDF) improves SDR by capturing the common frequency

patterns. Replacing TDFs with LaSAFTs (FiLM CUNet + LaSAFT) significantly im-

proves the average SDR score by 0.51dB, indicating that the proposed LaSAFTs are more

appropriate for multi-instrument tasks than TDFs. The proposed model (GPoCM CUNet

+ LaSAFT) outperforms the others, achieving comparable but slightly inferior results to

dedicated models.

model vocals drums bass other AVG

dedicated (chapter 3) 7.07 5.38 5.62 4.61 5.66

FiLM CUNet 5.14 5.25 4.20 3.40 4.49

+ TDF 5.88 5.70 4.55 3.67 4.95

+ LaSAFT 6.74 5.64 5.13 4.32 5.46

GPoCM CUNet 5.43 5.30 4.43 3.51 4.67

+ TDF 5.94 5.46 4.47 3.81 4.92

+ LaSAFT 6.96 5.84 5.24 4.54 5.64

Table 4.1: An ablation study: dedicated means U-Nets for the single source separation,

trained separately. FiLM CUNet refers the baseline in section 4.3. The last row is our

proposed model.

Also, a comparison against existing state-of-the-art models on the MUSDB18 bench-

mark is provided in Table 4.2 The first seven rows of Table 4.2 show SDRs of state-of-the-

art models, which are not conditioned on an external condition. The SDR performance

of each non-proposed method is taken from the respective papers.

The eighth row describes the results of the dedicated U-Nets with nine TDF-TDF

blocks based on DCSE, introduced in chapter 3. For fair comparison, the proposed ‘CUNet

62

with LaSAFT + GPoCM’ with the same frequency resolution as the other state-of-the-art

models [22, 55] (FFT window size = 4096) was used. Similar to the results in Table 4.1, the

proposed model was slightly inferior to its dedicated counterpart. As shown in the last row

of Table 4.2, the proposed model yields comparable results against the existing methods

and even outperforms the others (except for the dedicated counterparts) on ‘vocals’ and

‘other.’ Notably, the proposed usually performs better than the other conditioned source

separation model called Meta-TasNet [43].

The original CUNet with a window size of 4096 were omitted in this experiment because

they were expected to show inferior performance to the proposed. The proposed model

with a window size of 2048 significantly outperformed the generalized CUNet as shown in

Table 4.1 and the generalized model usually performed better than the original.

LaSAFT’s ability, which allows the proposed model to extract latent instrument-

attentive frequency patterns, significantly improves the SDR of ‘other’ since it contains

various instruments such as piano and guitars. Also, existing works [63] and Publication

I have shown that FT-based methods are beneficial for voice separation, which explains

our model’s excellent SDR performance on vocals.

model conditioned? vocals drums bass other AVG

Demucs [6]∗ ✗ 6.84 6.86 7.01 4.42 6.28

Conv-Tasnet [6, 26]∗ ✗ 6.43 6.02 6.20 4.27 5.73

UMX [51] ✗ 6.32 5.73 5.23 4.02 5.32

DGRU-DGConv [22] ✗ 6.85 5.85 4.86 4.65 5.55

MMDenseLSTM [53] ✗ 6.60 6.43 5.16 4.15 5.59

D3Net [55] ✗ 7.24 7.01 5.25 4.53 6.01

Nachmani[34]∗ ✗ 6.92 6.15 5.88 4.32 5.82

dedicated (chapter 3) ✗ 7.98 6.11 5.94 5.02 6.26

Meta-TasNet[43]∗ ✓ 6.40 5.91 5.58 4.19 5.52

LaSAFT+GPoCM (proposed) ✓ 7.33 5.68 5.63 4.87 5.88

Table 4.2: A comparison SDR performance of our models with other systems. ‘∗’ denotes

model operating in time domain.

63

4.7 Discussion

This section first summarizes the differences between the original CUNet [32], our

baseline, and the proposed model. Then, it derives reusable insights which can be adopted

in other domain as well.

The original CUNet[32] is the most relevant work. It was extended in this section by

employing LaSAFT and GPoCM. Besides, the baseline used in the section is also different

from it. The differences between them are summarized as follows: (1) the proposed

model’s U-Net is based on a generalized U-Net for source separation used in section 3.4,

but the U-Net of [32] is more similar to the original U-Net [42], and (2) the proposed

architecture applies FiLM/GPoCM to internal features in the decoder, but [32] applies

it in the encoder. The authors of [32] tried to manipulate latent space in the encoder,

assuming the decoder can perform as a general spectrogram generator, which is ‘shared’

by different sources. However, it was founded that this approach is not practical since

it makes the latent space (i.e., the decoder’s input feature space) more discontinuous. It

was observed that applying FiLMs in the decoder was consistently better than applying

FiLMs in the encoder.

For multi-source separation, [43] employed meta-learning, which is similar to condi-

tioning learning. It also has external networks that generate parameters for the target

instrument. Whiling the proposed focus on modulating internal representations with

GPoCM, [43] focuses on generating parameters of the masking subnetwork. Also, models

proposed in [43, 34] operate in the time domain, while ours in the time-frequency domain.

While other multi-source separation methods [22, 55] estimate multiple sources simul-

taneously, the proposed method tries to condition a shared U-Net. It is expected that the

proposed can be easily extended to more complicated tasks such as audio manipulation.

64

4.8 Conclusion

This chapter proposes LaSAFT that captures source-dependent frequency patterns by

extending TDF to fit the multi-source task. This section also proposes GPoCM that

modulates features more flexibly and expressively than FiLM. The experimental results

indicate that employing our LaSAFT and GPoCM in CUNet can significantly improve

SDR performance. Possible future works include the following topics; reducing the number

of parameters and the memory usage of LaSAFT to consider more latent instruments and

extending the proposed architecture to audio manipulation tasks, where we can condition

the model by providing various instructions.

65

Chapter 5

Latent Source Analysis for Audio

Manipulation on Selective Sources

This chapter addresses a novel problem called Audio Manipulation on Specific Sources

(AMSS). Section 5.1 formally defines AMSS and Section 5.2 introduces a structured query

language for AMSS. Designing a neural network for AMSS is challenging because the

sources of a given mixture track are usually not observable. This chapter proposes a

neural network called AMSS-Net that extracts a feature map containing latent sources

from the given mixture audio and selectively manipulates them while preserving irrelevant

latent sources. Section 5.4 describes the AMSS-Net architecture. Another challenge is that

existing datasets cannot be directly used for supervised training AMSS-Net. To this end,

section 5.3 proposes a training framework for AMSS that uses a ‘source observable multi-

track dataset’ such as MUSDB18 [41]. Audio transformations are applied onto specific

sources of a given multi-track using general methods from Digital Signal Processing (DSP)

libraries to generate an AMSS triple on the fly. Section 5.5 summarizes and discusses the

various experimental results. Section 5.6 discusses various aspects including pros and cons

of the AMSS-Net, and section 5.7 concludes this chapter.

67

5.1 Audio Manipulation on Specified Sources

In recent days, social media applications have attracted many users to create, edit,

and share their audio, audio-visual, or other types of multimedia content. However, it

is usually hard for non-experts to manipulate them, especially when they want to edit

only the desired objects. Fortunately, for image manipulation, recently proposed methods

enable non-expert users to edit the desired objects while leaving other contents intact.

These machine learned-based methods can decrease human labor for image editing and let

non-experts manipulate their image without abundant knowledge of tools that are usually

complicated to use, as mentioned in chapter 1.

On the other hand, little attention has been given to machine learning methods for

automatic audio editing. It is challenging to edit specific sound objects (e.g., decrease the

volume of cicada buzzing noise) in the given audio.

Although many machine learning approaches have been proposed for audio processing

[28, 29, 27, 48, 61, 33, 1, 32, 60, 43], to the best of knowledge, there is no existing method

that can directly address AMSS. This chapter proposes a novel end-to-end neural network

that performs AMSS according to the given textual query. Designing a neural network for

AMSS is straightforward if the sources of a given mixture track are observable. However,

this section assumes that they are not observable because most audio data does not

provide them in general. In the assumed environment, modeling AMSS is very challenging

because a sound object (e.g., a sample in a wave, a frequency bin in a spectrogram) is

‘transparent’([62]); a pixel in an image usually corresponds to only a single visual object,

whereas a sound object carries information of multiple sources, as shown in Figure 1.3.

Thus, different approaches are required for AMSS from the existing image manipulation

techniques.

Considering that audio editing usually requires expert knowledge of audio engineering

or signal processing, this chapter explores a deep learning approach in conjunction with

textual queries to lessen audio editing difficulty. Specifically, this chapter addresses a novel

task named Audio Manipulation on Specific Sources (AMSS), which aims to edit only

desired objects that correspond to specific sources, such as vocals and drums, according

68

to a given description while preserving the content of sources that are not mentioned in

the description. AMSS can be used for many applications such as video creation tools

making audio editing easy for non-experts. For example, users can decrease the volume

of drums by typing simple textual instructions instead of time-consuming interactions

with digital audio workstations. Before modeling AMSS with deep neural networks, this

section gives a formal definition of AMSS as follows:

Definition 1. Audio Manipulation on Specified Sources: for a given audio track A and

a given description S, AMSS aims to generate a manipulated audio track A′ that seman-

tically matches S while preserving contents in A that are not described in S. Assume

that A contains multiple sources, and S describes the desired audio transformation and

the targets, which we want to manipulate. Assume that S can be represented as a one-hot

encoding or a textual query. In this thesis, we assume that S is a textual query written in

the Audio Manipulation Language described in section 5.2.

Although several machine learning methods have been proposed for audio processing

[28, 29, 27, 48, 61, 33, 1, 32, 60, 43], to the best of knowledge, there is no existing method

that can directly address AMSS. This chapter proposes a novel end-to-end neural network

that performs AMSS according to the given textual query.

Designing a neural network for AMSS is straightforward if the sources of a given mix-

ture track are observable. However, this dissertation assumes that they are not observable

because most audio data does not provide them in general. In the assumed environment,

modeling AMSS is very challenging because a sound object is transparent, as discussed

in chapter 1 and shown in Figure 1.3. Thus, unconventional approaches are required for

AMSS from the existing image manipulation techniques. To address this challenge, section

5.4 proposes a neural network called AMSS-Net that extracts a feature map containing

latent sources, proposed as key concepts in the previous chapter, from the given mixture

audio and selectively manipulates them while preserving irrelevant latent sources.

It is also challenging that existing datasets cannot be directly used for supervised

training AMSS-Net. If a training dataset of triples {(A(i), A′(i), S(i))}Ni=1, where S(i) is

an AMSS description, A(i) is a mixture, and A′(i) is the manipulated audio according

69

to S(i) is provided, a neural network net can be trained in a supervised manner by

minimizing
∑N

i=1 loss(net(A
(i), S(i)), A′(i)), where loss is a distance metric such as L2.

Unfortunately, there were no datasets currently available that directly target AMSS. To

solve this issue, section 5.3 proposes a novel training framework for AMSS that uses a

‘source observable multi-track dataset’ such as MUSDB18 [41]. Audio transformations are

applied onto specific sources of a given multi-track using general methods from Digital

Signal Processing (DSP) libraries to generate an AMSS triple on the fly.

This chapter finally verifies that it is possible to train a neural network for AMSS. As a

proof-of-concept, this chapter focuses on modifying specified sources’ sonic characteristics

(e.g., loudness, panning, frequency content, and dereverberation). More complex manip-

ulations such as distortion are not addressed in this thesis. As discussed in section 5.6,

more complex manipulations need more sophisticated architectures than the proposed.

Throughout the rest of the paper, we define an AMSS task to be a set of instructions

dealing with the same manipulation method. Table 5.1 lists nine AMSS tasks modeled in

this chapter. Note that an AMSS task class is defined as a set of similar AMSS tasks.

class task DSP operations

volume control

separate masking the others

mute masking targets

increase vol re-scaling (increase)

decrease vol re-scaling (decrease)

volume control

(multi channel)

pan left re-scaling (left > mean > right)

pan right re-scaling (left < mean < right)

filter
lowpasss Low-pass Filter

highpass High-pass Filter

delay dereverb reverb∗

Table 5.1: List of AMSS tasks modeled in this paper: (∗) denotes reversed generation

process (the line 5 in Algorithm 1)

70

5.2 Audio Manipulation Language

As mentioned earlier, this chapter assumes that S is given as a textual query, such as

“apply light lowpass to drums”. This assumption is plausible because textual querying en-

ables us to naturally represent any pair of a transformation function and its target sources

with particular options. For example, one can control the degree of audio effects (which

corresponds to the parameter settings of DSP functions) by simply inserting adjectives

such as light, medium, or heavy into the query. It also can provide easy extensibility to

natural language interfaces, which will be addressed in future works.

Accordingly, this section proposes an Audio Manipulation Language based on a prob-

abilistic Context-Free Grammar (CFG) [5] for AMSS. For the sake of simplicity, a subset

of production rules (i.e., Rules (5.1a)-(5.1f)) that define the query language’s syntax for

the filter class were presented. The Full CFG is given in Appendix 7.1. It is also available

online1.

< desc >→ < clsf > (5.1a)

< clsf >→apply < opt− filter > to < srcs > (5.1b)

< opt− filter >→ < opt > < filter > | < filter > (5.1c)

< opt >→ light |medium |heavy (5.1d)

< filter >→ lowpass | highpass (5.1e)

< srcs >→ vocals | drums | bass

| vocals, drums | vocals, bass | drums, vocals

| drums, bass | bass, vocals | bass, drums

| vocals, drums, bass | vocals, bass, drums

| drums, vocals, bass | drums, bass, vocals

| bass, vocals, drums | bass, drums, vocals (5.1f)

1https://kuielab.github.io/AMSS-Net/aml.html

71

In the above rules, bold strings are terminal symbols, and strings enclosed in angle

brackets are non-terminal symbols. Each rule is of the form A → α|β|..., which means

that A can be replaced with α or β. In a CFG, a rule is applied to replace a single non-

terminal symbol with one of the expressions. Starting from the first symbol < desc >,

it is able to generate a valid query string by recursively applying rules until there is no

non-terminal symbol.

For example, “apply medium lowpass to vocals, drums” can derived from <

desc > as follows:

< desc >→ < clsf > (5.2a)

→apply < opt− filter > to < srcs > (5.2b)

→apply < opt > < filter > to < srcs > (5.2c)

→apply medium < filter > to < srcs > (5.2d)

→apply medium lowpass to < srcs > (5.2e)

→apply medium lowpass to vocals, drums (5.2f)

It can be also producible; “apply lowpass to vocals, drums” if we choose < filter >

instead of < opt >< filter >. Since default option for lowpass level is set to be medium,

those two queries have the same meaning.

Notably, rules (5.1b)-(5.1e) are dependant on a AMSS task class, and Rule (5.1f) is

dependant on a given multi-track audio. In this thesis, four AMSS task classes are used

as shown in Table 5.1. Since the experiment uses MUSDB18[41] dataset of which track

contains three named instruments (i.e., vocals, drums, bass), the right-hand side of Rule

(5.1f) is set to have all the possible permutations (15 expressions in total).

72

5.3 Training Framework for AMSS

This section proposes a novel training framework that uses a multi-track dataset. It

generates an AMSS triple (A,A′, S) on the fly by applying DSP library transformations

or audio effects onto target sources of a given multi-track audio file. For instance, suppose

that a randomly generated query string S is given as ‘apply lowpass to drums’ using the

CFG and a multi-track that consists of three sources, namely, a vocal track a0, a bass

track a1, and a drum track a2. The proposed training framework takes the linear sum

(i.e., A =
∑

aj) to generate corresponding input A. For the target audio A′, it computes∑
j /∈τ aj +

∑
j∈τ f(aj), where τ and f is the set of target sources and DSP function

described in S, respectively. The framework applies a Low-pass Filter (LPF) to a2, and

takes the sum for A′ as follows: A′ = a0 + a1 +LPF (a2). By doing so, it can generate an

AMSS triple on the fly for a given description S.

Audio restoration tasks such as dereverberation requires swapping A and A’ because

the goal is to remove effects. For example, the framework applies reverb to a2, takes the

sum for A′ = a0 + a1 + reverb(a2), and returns (A′, A, S) instead of (A,A′, S) for the

description “remove reverb from drums.”

Algorithm 1 AMSS Training Triple Generation

Input: multi-track {aj}nj=1, a set G of triple generators
Output: a triple (A,A′, S)

1: randomly sample a generator g from G
2: S, f, τ ← g.gen random generate()
3: A←

∑n
j=1 aj

4: A′ ←
∑

j /∈τ aj +
∑

j∈τ f(aj)
5: if g is for removing effect then
6: (A,A′, S)← (A′, A, S)
7: end if
8: return (A′, A, S)

The training framework has a set G of triple generators. A generator g ∈ G has a

subset of CFG for text query generation and the corresponding DSP function f , which is

used for computing A′. g also has an indicator that describes whether g is for applying

or removing the effect. For a multi-track {Aj}nj=1 and a set G of triple generators, the

73

framework generates an AMSS triple by using Algorithm 1, where n denotes the number

of sources. For example, if a random generated query is “apply low-pass to drums,” then

the corresponding triple is generated as shown in Figure 5.1.

Figure 5.1: An example of AMSS Training Triple Generation Processes

74

5.4 AMSS-Net Architecture

The AMSS-Net takes an audio track A with a text description S as input and outputs

the manipulated audio track Â′ as shown in Figure 5.2. It consists of two sub-networks,

i.e., a Description Encoder Edesc and a Spectrogram Encoder-Decoder Network SEDN .

Edesc extracts word features w ∈ RL×E from S, where E denotes the dimension of the word

features and L denotes the number of words, to analyze the meaning of S. SEDN takes

as input word features w and the complex-valued spectrogram Aspec of the input audio A.

Conditioned on the word feature w, it estimates the complex-valued spectrogram Â′
spec,

from which Â′ can be reconstructed using iSTFT. An AMSS-Net is trained by minimizing

the L2 loss between the ground-truth spectrogram A′
spec of A′ and the estimated Â′

spec.

Figure 5.2: AMSS-Net Architecture

5.4.1 Description Encoder

The description encoder Edesc encodes the given text description S written in the Audio

Manipulation Language (section 5.2) to word features w ∈ RL×E , where the dimension

of each word feature is denoted by E and the number of words in S by L. It embeds

each word to a distributed representation using a word embedding layer and then encodes

the embedded representation using a bidirectional Recurrent Neural Network (Bi-RNN)

[44]. Pre-trained word embeddings such as GloVe[38] are used for the initialization of

the weight of the embedding layer since they were trained to capture the syntactic and

semantic meaning of words.

75

5.4.2 Spectrogram Encoder-Decoder Network

The Spectrogram Encoder-Decoder Network SEDN estimates the complex-valued

spectrogram Â′
spec, conditioned on the extracted word features w ∈ RL×E . It is an

encoder-decoder network that has the same number of down-sampling layers and up-

sampling layers as depicted in Figure 5.2. It extracts down-sampled representations from

Aspec in the encoding phase and generates up-sampled representations in the decoding

phase. The output of the last decoding block is fed to the Aggregate PoCM (see section

5.4.3) that generates the output Â′
spec.

As illustrated in Figure 5.2, it has direct connections between the encoding blocks

and their counterpart decoding blocks, which help decoding blocks recover fine-grained

details of the target. Instead of concatenation or summation commonly used in several

U-Net-based architectures [1, 32, 6], this section proposes a Channel-wise Skip Attention

(CSA) mechanism (section 5.4.2) that attentively aggregates latent source channels to

reconstruct the original channels.

As shown in Figure 5.2, SEDN consists of several components: encoding blocks,

down/up-sampling layers, decoding blocks, and an Aggregate PoCM. Strided convolutions

and transposed convolutions are used for down-sampling and up-sampling, respectively.

Other components are introduced in section 5.4.2, section 5.4.2, and section 5.4.3.

Spectrogram Encoding Block

SEDN uses multiple encoding blocks in the encoding phase to capture common sonic

properties residing in the input spectrogram. The kth encoding block Ek transforms an

input spectrogram-like tensors into an equally-sized tensor. TFC-TDF described in 3.5 is

adopted for each encoding block, which applies densely-connected 2-d convolutions to the

given spectrogram-like representations followed by a fully connected layer that enhances

features of frequency patterns observed in the frequency axis. As observed in chapter

4, TDF blocks inserted in a Conditioned U-Net can improve the overall performance by

capturing frequency-to-frequency dependencies observed across all sources. This is why

TFC-TDF blocks are selected as fundamental blocks in the encoder of AMSS-Net.

76

Figure 5.3: kth decoding block (Dk)

Spectrogram Decoding Block

In the decoding phase, SEDN uses multiple decoding blocks. Each decoding block

first extracts a feature map in which each channel corresponds to a specific latent source.

It selectively manipulates them conditioned on the AMSS description and aggregates

channels using a channel-wise attention mechanism to minimize information loss during

channel reconstruction.

As shown in Figure 5.3, the kth decoding block Dk takes three inputs: (1) Xk
D: features

from the previous decoding block, (2) Xk
E : features from the skip connection and (3)

w ∈ RL×E : word features. The first block takes the up-sampled features from the encoder

instead because it has no previous decoding block.

Each decoding block consists of four components: Latent Source Channel (LSC) Ex-

tractor, Condition weight generator, Selective Manipulation via PoCMs (SMPoCM), and

Channel-wise Skip Attention (CSA). illustrate the overall workflow in Figure 5.3.

Latent Source Channel Extractor

Assuming it is possible to learn representations of latent sources that deal with more

detailed acoustic features than symbolic-level sources, the Latent Source Channel (LSC)

extractor aims to generate a feature map V ch, in which each channel deals with a latent

source. Figure 5.4 visualizes the conceptual view of latent source channels. Each channel

is a spectrogram-like representation of size T (k)×F (k) dealing with a specific latent source.

For example, the blue channel in Figure 5.4 deals with the acoustic features observed in

the bass drum. It can also generate an audio track from a single latent source channel.

77

In section 5.5.4, visualization and discussion of the audio generation are provided.

Figure 5.4: Conceptual View of Latent Source Channels

The LSC extractor takes Xk
E , X

k
D ∈ RC×T (k)×F (k)

as input and extracts feature maps

with M latent source channels, where C refers to the number of channels, T (k) × F (k)

refers to the shape of the spectrogram-like features, and M denotes the number of latent

sources. It first concatenates Xk
E and Xk

D to obtain [Xk
E ;Xk

D] ∈ R2C×T (k)×F (k)

, and

applies a TFC-TDF block to [Xk
E ;Xk

D] to obtain acoustic features Xk for latent source

separation.

To extract a feature map V ch ∈ RM×T (k)×F (k)

with M latent source channels, it applies

a 1× 1 convolution to Xk. This convolution is denoted by convV since its role is a value

generator in the context of the channel-wise skip attention mechanism section 5.4.2 as

shown in Figure 5.3. Similar to convV , it applies another 1× 1 convolution called convK

to Xk, of which role is a key generator, to obtain Kch. By the guide of the channel-wise

skip attention mechanism, the LSC extractor is expected to extract latent source channels

from the mixture features so that each channel deals with a latent source.

The optimal M depends on datasets. For example, there are 4 types of sources (i.e.,

’vocals,’ ’drums,’ ’bass,’ and ’other’) in the MUSDB18 [41] dataset. Humans are used to

categorizing such symbolic-level classes of sources, but there are more latent sources we

have to consider for AMSS, as described before. After carefully listening to the training

dataset, one can derived 8 different latent sources as follows: (female, male vocals), (kick,

snare, hat), (bass), and (piano, guitar). Any pair in these latent sources must not be

treated as a single source in AMSS-Net because each has its unique timbre. That is why

the proposed method uses M of 8 in the experiment section.

78

It is also recommended the empirical optimization for the optimal M. Adjusting M

using a small portion of the training dataset (also known as a development set) usually

provides a better configuration for the model after fining M based on dataset analysis.

If GPUs’ memory sizes are limited, it is also possible to use a smaller M. Since we use

the multi-head attention mechanism in Channel-wise Skip Attention (CSA), which is

introduced in section 5.4.2, using a slightly smaller M does not significantly impact the

performance. Multi-heads can relax this by letting each head focus on a different subset

of them.

Selective Manipulation via PoCMs

Since a decoding block must manipulate specific features while preserving other fea-

tures, selective manipulation requires a more sophisticated modulation than existing meth-

ods such as Feature-wise Linear Modulation (FiLM) [39], or Point-wise Convolutional

Modulation (PoCM).

SMPoCM, an extension of PoCM, is proposed to manipulate features for the given

AMSS task selectively. As shown in Figure 5.3, it takes as input V ch and condition

parameters θ = (θs, θm, θi), generated by the LSC extractor and the condition weight

generator, respectively. It outputs V ′ch ∈ RM×T (k)×F (k)

, a selectively manipulated fea-

ture.

Inspired by Long Short-term Memory (LSTM) [15], the SMPoCM uses three different

PoCMs: (1) a selective gate PoCM with θs to determine how much we should manipulate

each latent source channel, (2) a manipulation PoCM with θm to manipulate specific

features, and (3) an input gate PoCM with θi to determine how much we should emit the

manipulated features.

Before defining SMPoCM formally, the behavior of PoCM is summarized as follows:

a PoCM is a point-wise convolution (i.e., 1 × 1 convolution) of which the condition

weight generator provides parameters. A definition of SMPoCM is provided as follows:

SMPoCM(X|θ) = i ⊙ tanh (PoCM(s ⊙ X, θm)) +(1 − s) ⊙ X , where s is defined as

σ(PoCM(X, θs)), i is defined as σ(PoCM(X, θi)), ⊙ is Hadamard product, and σ is a

79

sigmoid function. The total number of parameters in θ is about 3(M2 + M) (i.e., three

point-wise convolutions).

SMPoCM naturally models the selective modulation required for modeling AMSS tasks.

For example, if ith latent source should be preserved for the given input, then the ith

channel of s would be trained to have near-zero values.

Condition Weight Generator

Given w ∈ RL×E , the condition weight generator generates parameters θ = (θs, θm, θi).

AMSS-Net exploits the attention mechanism to determine which word should be attended

to θs, θm, and θi respectively.

The weight generator has a learnable matrix Θ ∈ R3×dk , where the cardinality of

each PoCM task embedding is denoted by dk. It also has two linear layers lineark and

linearv that embed w to wkey ∈ RL×dk and wvalue ∈ RL×dk respectively. To determine

which word we should attend for each task, it computes the scaled attention [58] as

follows: αwg = softmax(
Θwkey√

dk
)wT

value. Finally, it generates θs, θm, and θi as follows:

θs = linears(α
wg[0, :]), θs = linearm(αwg[1, :]), and θs = lineari(α

wg[2, :]), where linears,

linearm, and lineari are fully-connected layers.

Channel-wise Skip Attention

Inspired by skip attention [66] and [4], AMSS uses a Channel-wise Skip Attention (CSA)

mechanism. It attentively aggregates M latent source channels to restore the number of

channels to the same as the input (i.e., C). The goal of CSA is to minimize information

loss during channel reconstruction to preserve other features that are irrelevant to the

description.

Figure 5.3 overviews the workflow required to prepare the query feature Qch, key

feature Kch, and the value feature V ′ch. To obtain Qch ∈ RC×T (k)×F (k)

, it applies convQ,

a 1 × 1 convolution to Xk
E . It is notable that Qch represents the original audio feature

which is not conditioned by any decoding units. For each frame, CSA aims to capture

channel-to-channel dependencies between Xk
E that encodes the original acoustic features

80

of A and the feature map Kch of isolated latent sources obtained by the LSC extractor.

It is worth noting that it uses Kch for computing attention matrix instead of V ′ch since

V ′ch, which SMPoCM modulated, no longer has the same information as Xk
E .

For Qch
t = Qch[:, t, :] and Kch

t = Kch[:, t, :], it computes the scaled dot product atten-

tion matrix [58] as follows:

CSA(Qch
t ,Kch

t) = softmax(
Qch

t (Kch
t)T√

F (k)
) (5.3)

The attention weight CSA(Qch
t ,Kch

t)i,j represents the correlation between the ith chan-

nel of the original audio features and the jth latent source channel of the decoded audio

features. Finally, it is able to obtain the decoding block’s output ykD, where ykD[:, t, :] is

defined as CSA(Qch
t ,Kch

t)V ′ch[:, t, :].

One can argue that Qch
t and Kch

t must also be conditioned on the given word features,

because it has been thought natural to use an individual transformation for each query,

key, and value in attention, where the goal is to generate an equivalent output in a different

form for the given input (e.g., English-to-French or Text-to-Image). The input and output

must have the same information in such tasks.

However, the input and output usually carry different information in AMSS. For ex-

ample, input is a mixture of (vocals+drums+bass+other) while output is a mixture of

(LPF(vocals)+drums+bass+other) for a task with the query ”apply lowpass to vocals.”

On top of this observation, the attention for AMSS must be rethought.

For AMSS, the goal is not only to manipulate target sources but also to preserve the

others. To provide the entire uncorrupted spectrum of latent sources in the mixture, a

nearly-raw output of the encoder block was used to obtain Qch
t . It is independent of word

features. For manipulation, SMPoCM was used to manipulate V ch
t to obtain V ′ch

t . To

generate the final output V ′
t of a decoding block, we have to attentively aggregate channels

with the guide of the attention.

Suppose that V ′ch
t was reused to compute the attention matrix with Qch

t . At first

glance, it might seem this approach is more appropriate than the proposed method. How-

ever, the fundamental goal is the ideal reconstruction weight matrix that preserves the

81

other sources. The attention between Qch
t and V ′ch

t cannot provide the ideal attention

since this decoding block already corrupted V ′ch
t with word features by this decoding

block. In short, this attention is a corrupted similarity matrix in the perspective of

preservation. Meanwhile, Kch
t might have been manipulated by previous blocks but not

by this decoding block. We have considered that the attention matrix computed with the

features of the pure mixture (i.e., Qch
t) and the Kch

t , which is independent of the word

feature in this block, is ideal.

The above is why the proposed model only manipulates a value representation, but

it is still plausible that applying a FiLM, a PoCM, a GPoCM or even a simple linear

transformation to Query and Key features might improve the performance. The proposed

method adopts none of them for several reasons: they are dropped because they do not

seem mandatory or critical for the given task; to clarify that the given task is different

from the existing ‘translation’ tasks; to simplify models.

5.4.3 Aggregate PoCM

The Aggregate Pocm is similar to the SMPoCM other than two key differences. First,

the Aggregate PoCM only has one PoCM that is not followed by any activation. Second,

the Aggregate PoCM reduces the number of channels from C to 4 (i.e., the number of

channels of the two-channeled complex-valued spectrogram) while the SMPoCM’s input

and output have the same number of channels.

82

5.5 Experiments

5.5.1 Experiment Setup

This section evaluates the proposed model both qualitatively and quantitatively on

various AMSS tasks described in Table 5.1 using the MUSDB18 [41] dataset. This section

compares its performance with baselines to verify the architecture.

Training Framework

MUSDB18 dataset contains 86 tracks for training, 14 tracks for validation, and 50

tracks for the test. Each track is stereo, sampled at 44100 Hz, and each data tuple consists

of the mixture and four sources: vocals, drums, bass, and other. Training framework is

implemented based on MUSDB18 and pysndfx2, a Python DSP library. All models are

trained based on this framework with 9 AMSS tasks listed in Table 5.1. For each task,

triple generators are developed based on the Audio Manipulation Language (section 5.2)

and MUSDB18. The ‘other’ source is excluded since it is not a single instrument. With

the set G of triple generators and randomly generated multi-tracks obtained by data

augmentation [57], AMSS triples are generated by using Algorithm 1 for training.

Training Environment

Models are trained using Adam [18] with learning rate lr ∈ [0.0001, 0.001]. Each model

is trained to minimize the L2 loss between the ground-truth and estimated spectrograms.

For validation, the L1 loss of target and estimated signals is used. It takes about two

weeks to converge when models are trained with a single 2080Ti GPU.

5.5.2 Model Configurations

To validate the effectiveness of AMSS-Net, experimental comparisons are provided

with the two baselines. One does not use CSA (AMSS-Net w/o CSA), and the other does

2https://pypi.org/project/pysndfx/

83

not use SMPoCM in decoding blocks (AMSS-Net w/o SM). The baseline model without

CSA uses an LSC extractor with LaSAFT block instead of TFC-TDF to compensate the

absence of CSA. The model without SMPoCM uses a single PoCM with tanh activation

in its decoding block. An AMSS-Net has about 4.3M, a baseline without CSA has about

4.9M, and a baseline without SMPoCM has about 2.4M.

For hyper-parameter setting, a similar configuration of models with an FFT window

size of 2048 is used as in section 4.6. Every model has three encoding blocks, two decoding

blocks, an additional Aggregate PoCM block. The number of latent sources is assumed to

be eight (i.e., M = 8). Adopting the multi-head attention mechanism [58] for CSA, the

number of heads is set to 6. The STFT parameter of each model is as follows: an FFT

window size of 2048 and a hop size of 1024.

model vocals drums bass other AVG

Meta-TasNet 6.40 5.91 5.58 4.19 5.52

LaSAFT-GPoCM-Net12 7.33 5.68 5.63 4.87 5.88

LaSAFT-GPoCM-Net11 6.96 5.84 5.24 4.54 5.64

AMSS-Netseparate
6.78

± .12

5.92

± .03

5.10

± .06

4.51

± .10

5.58

± .90

AMSS-Net
6.34

± .016

5.53

± .07

4.33

± .13

3.99

± .07

5.05

± .99

w/o CSA
6.03

± .24

5.53

± .12

4.22

± .09

3.73

± .23

4.88

± .99

w/o SMPoCM
6.08

± .25

5.63

± .08

4.28

± .19

3.76

± .04

4.94

± .99

Table 5.2: A comparison SDR performance. LaSAFT-GPoCM-Netx uses FFT window

size of 2x

84

p
a
n

le
ft

p
an

ri
gh

t
d

ec
re

as
e

v
ol

u
m

e
in

cr
ea

se
v
o
lu

m
e

vo
c

d
ru

m
b

as
s

vo
c

d
ru

m
b

as
s

vo
c

d
ru

m
b

a
ss

vo
c

d
ru

m
b

a
ss

re
fe

re
n

ce
lo

ss
4.

62
8.

20
2.

18
4.

66
8.

30
2.

13
4.

06
6.

99
2.

00
6
.6

8
9.

7
0

3.
4
8

A
M

S
S

-N
et

3
.3
2

±
0
.1

9

4
.8
1

±
0.

16

2
.1
1

±
0.

13

3
.3
4

±
0.

19

4
.8
5

±
0.

19

2
.1
1

±
0.

17

2
.7
2

±
0.

23

3
.7
8

±
0.

18

1
.9
3

±
0.

1
3

3
.4
9

±
0.

2

4
.3
6

±
0.

1
8

2
.9

±
0
.1

9

w
/o

C
S

A
3.

65

±
0
.1

7

5.
46

±
0.

2

2.
61

±
0.

33

3.
63

±
0.

11

5.
53

±
0.

23

2.
58

±
0.

3

3

±
0.

13

4.
26

±
0.

14

2.
32

±
0.

3
3

4
.4

7

±
0.

1
2

5.
1
1

±
0
.1

8

3.
6
6

±
0.

4

w
/o

S
M

P
o
C

M
4.

34

±
0.

2

5.
51

±
0.

16

3.
23

±
0.

19

4.
23

±
0.

18

5.
5

±
0.

11

3.
19

±
0.

17

3.
55

±
0.

16

4.
41

±
0.

16

2.
92

±
0.

1
7

4
.1

6

±
0.

1
4

5
.2

±
0
.1

5

3
.4

±
0
.1

7

lo
w

p
as

s
fi

lt
er

h
ig

h
p

as
s

fi
lt

er
d

er
ev

er
b

er
at

io
n

m
ea

n

vo
c

d
ru

m
b

as
s

vo
c

d
ru

m
b

as
s

vo
c

d
ru

m
b

as
s

vo
c

d
ru

m
b

a
ss

re
fe

re
n

ce
lo

ss
9.

02
16

.2
7

1.
12

6.
72

8.
22

4.
74

9.
43

11
.0

7
5.

61
6
.4

6
9
.8

2
3
.0

4

A
M

S
S

-N
et

7
.3
2

±
0
.1

9

1
0
.9
2

±
0.

15

2
.6
5

±
0.

09

5.
65

±
0.

28

6
.9

±
0.

3

3
.8

±
0.

11

6
.1
2

±
0.

29

6
.7
2

±
0.

23

4
.1
8

±
0
.2

4

4
.5
7

±
1.

7
0

6
.0
5

±
2.

3
3

2
.8
1

±
0.

8
5

w
/o

C
S

A
7.

44

±
0
.0

7

12
.3

7

±
0.

5

3.
15

±
0.

21

5
.4
9

±
0.

25

7.
41

±
0.

67

4.
23

±
0.

4

6.
18

±
0.

12

7.
08

±
0.

07

4.
28

±
0
.1

4
.8

4

±
1.

5
3

6
.7

5

±
2.

6
0

3
.2

6

±
0.

8
3

w
/o

S
M

P
o
C

M
8.

11

±
0.

1

12
.0

6

±
0.

31

3.
67

±
0.

23

6.
81

±
0.

21

7.
84

±
0.

24

4.
85

±
0.

42

6.
68

±
0.

12

7.
17

±
0.

24

4.
68

±
0.

0
5

5
.4

1

±
1.

6
7

6
.8

1

±
2.

4
7

3
.7

1

±
0.

7
5

T
ab

le
5
.3

:
A

R
M

S
E

-M
F

C
C

C
om

p
ar

is
on

of
th

e
p

ro
p

os
ed

m
o
d

el
s

w
it

h
b

as
el

in
es

,
ov

er
7

A
M

S
S

ta
sk

s
a
p

p
li

ed
to

vo
ca

ls
,

d
ru

m
s,

a
n

d
b

a
ss

85

5.5.3 Quantitative Analysis

Evaluation of separate and mute tasks (Table 5.2)

To evaluate separate and mute tasks, Source-to-Distortion (SDR) [59] metric was com-

puted by using the official tool3. The MUSDB18 tasks are separating vocals, drums, bass,

and other, which corresponds to the following AMSS: ‘separate vocals,’ ‘separate drums,’

‘separate bass,’ and ’mute vocals, drums, bass.’ Using the SDR metric for these two

tasks allows to compare the proposed model’s source separation performance with other

state-of-the-art models for conditioned source separation. Following the official guideline,

this section reports the median SDR value over all the test set tracks for each run and

report the mean SDR over three runs (with a different random seed).

Table 5.2 summarizes the result, where AMSS-Net shows comparable or and slightly

inferior performance compared to state-of-the-art conditioned separation models, namely,

Meta-TasNet [43] and LaSAFT-GPoCM-Nets. AMSS-Net outperforms the baselines for

all sources except for drums, where the gap is not significant. It is worth noting that ours

can perform other AMSS tasks and show promising results on source separation tasks.

If AMSS-Net is trained solely for MUSDB18 tasks (AMSS-Netseparate), then it shows

comparable performance to LaSAFT-GPoCM-Net11 whose FFT window size is the same

as that of the proposed model.

Evaluation of other AMSS tasks (Table 5.3)

Since there is no reference evaluation metric for AMSS, this section proposes the new

evaluation benchmark. The benchmark script is available online4. For evaluation metric,

Mel-frequency Cepstral coefficients (MFCC) for A′ and Â′ are extracted, and the Root

Mean Square Error (RMSE) of them are computed, since MFCC approximates the human

perception of the given track. This metric is referred as RMSE-MFCC. This section

reports the mean RMSE-MFCC value over all the test set tracks for each run and report

the mean RMSE-MFCC over three runs.

3https://github.com/sigsep/sigsep-mus-eval
4https://github.com/kuielab/AMSS-Net/blob/main/task2 eval.py

86

Table 5.3 summarizes the results, where reference loss is the RMSE-MFCC of A and

A′. Reference loss provides information about the amount of manipulation needed to

model each AMSS task. As described in Table 5.3, AMSS-Net outperforms all the AMSS

task but a task of “highpass filter to vocals.” Significantly, the model without SMPoCM is

inferior to AMSS-Net for every task. It indicates that SMPoCM significantly contributes

to improving the quality of AMSS results. CSA also improves the performance of AMSS-

Net for most of the AMSS tasks. CSA might degrade the performance for more difficult

AMSS tasks by forcing the model to over-correlate the latent source channels with the

mixture channels. However, it reduces artifacts created during progressive manipulation

as described in section 5.5.5

5.5.4 Latent Source Channels

As mentioned in the LSC extractor (section 5.4.2), AMSS-Net is designed to perform

latent source-level analysis. Such analysis enables AMSS-Net to perform delicate manip-

ulation for the given AMSS task. To verify that AMSS-Net decoding blocks can extract a

feature map in which each channel corresponds to a specific latent source, an audio track

from a single latent source channel is generated. All channels is masked in the manip-

ulated feature map V ′ch except for a single latent source channel. Then it is fed to the

remaining sub-networks to generate the audio track during the last decoding block.

Figure 5.5 shows interesting results of generated audios, which remind us the conceptual

view of the latent source in Figure 5.4. For the given input track of Figure 5.5 (a), an

audio track is generated after masking all channels except for the fifth channel in the

second head group, then the result sounds similar to the low-frequency band of drums

(i.e., kick drum) as illustrated in Figure 5.5 (b). AMSS-Net can keep this channel and

drop other drum-related channels to process “apply lowpass to drums.” However, a latent

source channel does not always contain a single class of instruments. For example, the

latent channel of the fourth row in the table deals with several instruments. Some latent

sources were not interpretable to the authors. Generated samples are available online.5

5https://kuielab.github.io/AMSS-Net/latent source.html

87

(a) original (b) kick drum

(c) high hat (d) non-percussion

Figure 5.5: Mel-Spectrogram of single latent-source channel

5.5.5 Progressive Manipulation

This subsection shows that it is eable to repeatedly apply the proposed method to

manipulated audio tracks, which is also known as Progressive Manipulation used in con-

versational systems described in [23]. Figure 5.6 shows an example of progressive manip-

ulation.

Figure 5.6: An Example of Progressive Manipulation

However, methods based on neural networks sometimes suffer from artifacts [59], which

are not present in the original source. Although they sound negligible after a single

manipulation task, they can be large enough to be perceived after progressively applying

several. To investigate artifacts created by progressive manipulation, the same AMSS

88

task “apply highpass to drums” is issued to a track in a progressive manner. Figure (a)

shows the Mel-spectrogram of the ground-truth target. Blurred areas are observable in

the high-frequency range in Mel-spectrograms of Figure 5.7 (c) and (d). Compared to

them, Figure 5.7 (b) is more similar to the ground-truth target. Via hearing test, it was

observed perceivable artifacts 5.7 in the results of baselines. The AMSS-Net contains

minor artifacts compare to them because each decoding block of AMSS-Net has a CSA

mechanism, a unique structure that prevents unwanted noise generated by intermediate

manipulated features. Generated samples are available online6.

(a) ground-truth target (b) AMSS-Net

(c) w/o CSA (d) w/o SMPoCM

Figure 5.7: Mel-Spectrogram Comparison after applying 20 times of ‘apply highpass to

durms’ in a progressive manner

5.5.6 Controlling the level of audio effects

As mentioned in section 5.2, it is possible to train AMSS-Net to perform more detailed

AMSS such as “apply heavy lowpass to vocals”. As shown in Figure 5.8, users can control

the level of audio effects by simply injecting adverbs instead of a laborious search for an

6https://kuielab.github.io/AMSS-Net/progresive.html

89

appropriate parameter configuration. Generated samples are available online7.

(a) original (b) heavy highpass to vocals

(c) separate vocals (d) medium highpass to vocals

(e) mute vocals (f) light highpass to vocals

Figure 5.8: Controlling the level of highpass with adjectives

7https://kuielab.github.io/AMSS-Net/control level.html

90

5.6 Discussion

AMSS-Net shows promising results on several AMSS tasks. AMSS-Net can also be

trained with a more complicated AMSS training dataset based on a realistic audio mixing

dataset such as IDMT-SMT-Audio-Effects dataset [45]. However, this study is limited to

model relatively simpler AMSS tasks. One can extend this work to provide more complex

AMSS tasks such as distortion and reverberation. Each AMSS task in this paper only

deals with a single type of manipulations, but one can also extend this work to provide

multiple types of tasks such as “apply reverb to vocals and apply lowpass to drums” at

once. Also, this work is easily extendable to support a more user-friendly interface. For

example, adopting unsupervised training frameworks such as Mixture of Mixture (MoM)

[60] to train AMSS on annotated audio datasets such as clotho[8] might enable a natural

language query interface.

91

5.7 Conclusion

In this chapter, a novel task called AMSS is formulated. Also, this chapter proposes

AMSS-Net, which generates feature maps in which each channel deals with a latent source

and selectively manipulates them while preserving irrelevant features. AMSS-Net can

perform several AMSS tasks, unlike previous models such as LaSAFT-GPoCM-Net. The

experimental results show that AMSS-Net outperforms baselines on several tasks. Future

work will extend it to provide more complex AMSS tasks such as distortion and rever-

beration by adopting state-of-the-art methods such as Generative Adversarial Networks

(GAN).

92

Chapter 6

Conclusion

This dissertation presents deep learning-based latent source analysis for source-aware

audio manipulation. It proposes two neural networks for source separation and one neural

network for more advanced audio task called Audio Manipulation on Specified Sources

(AMSS). In each domain, the proposed networks show promising results achieving the

state-of-the-art performance on the existing benchmark or the proposed benchmark for

AMSS. Especially, a novel concept called Latent Sources Analysis is introduced for con-

ditioned source separation and AMSS. On top of the novel method called latent source

analysis, the proposed models outperform existing models in several tasks.

Specifically, this thesis verifies that injecting frequency transformation blocks, called

TDFs, into a standard U-Net architecture can significantly improve the separation per-

formance. Empirical justification is given to explain how it works with an ablation study.

Furthermore, this thesis extends TDFs to conditioned source separation by exploiting

the novel concept of latent sources. This thesis shows that LaSAFT, which aims to

capture source-dependent frequency patterns by extending TDF to fit the multi-source

task, can considerably improves the SDR performance. Also GPoCM is proposed, which

modulates features more flexibly and expressively than FiLM. The experimental results

indicate that employing our LaSAFT and GPoCM in CUNet can significantly improve

SDR performance.

93

The final goal of this work is to develop a neural network that can perform source-

specific audio manipulation according to the given text query, which is also called AMSS,

in this thesis. The proposed AMSS-Net can perform several AMSS tasks, unlike previous

models. The experimental results show that AMSS-Net outperforms baselines on several

tasks. I believe AMSS-Net can be widely used in various audio signal processing software

such as Smart-Phone-Applications, DAWs, or DAW-plugins, as many users have loved

the ML-based applications. Decreasing the difficulty of audio editing will make more

users create, edit, manipulate, and share their audio files. Future work will extend it

to provide more complex AMSS tasks such as distortion and reverberation by adopting

state-of-the-art methods such as Generative Adversarial Networks (GAN).

94

Chapter 7

Appendix

7.1 Appendix A - Context-Free Grammar for Audio Ma-

nipulation Language

1. < desc >→< clsv > ∥ < clsp > ∥ < clsf > ∥ < clsd >

2. < clsv >→< vchard > ∥ < vcsoft >

3. < vchard >→< mask − vol >< srcs >

4. < mask−vol >→ mute ∥ remove ∥ get rid of ∥ eliminate separate ∥ isolate ∥ extract

5. < vcsoft >→< rescale− vol > the volume of < srcs >

6. < rescale− vol >→ increase ∥ decrease

7. < clsp >→ pan < opt− pan > to the < direction > side

8. < opt− pan >→< src > ∥ < src > completely

9. < direction > left ∥ right

10. < clsf >→ apply < opt− filter > to < srcs >

95

11. < opt− filter >→< opt >< filter > ∥ < filter >

12. < opt >→ light ∥ medium ∥ heavy

13. < filter >→ lowpass ∥ highpass

14. < clsd >→ remove reverb from < srcs >

15. < srcs >→ vocals ∥ drums ∥ bass ∥ vocals, bass ∥ vocals, drums ∥ drums, vocals ∥

drums, bass ∥ bass, vocals ∥ bass, drums ∥ vocals, bass, drums ∥ vocals, drums, bass

∥ drums, vocals, bass ∥ drums, bass, vocals ∥ bass, vocals, drums ∥ bass, drums,

vocals ∥

96

Bibliography

[1] Jansson Andreas, Humphrey Eric, Montecchio Nicola, Bittner Rachel, Kumar

Aparna, and Weyde Tillman. 2017. Singing voice separation with deep u-net con-

volutional networks. In 18th International Society for Music Information Retrieval

Conference. 23–27.

[2] Martin Arjovsky, Amar Shah, and Yoshua Bengio. 2016. Unitary evolution recurrent

neural networks. In International Conference on Machine Learning. PMLR, 1120–

1128.

[3] Pritish Chandna, Marius Miron, Jordi Janer, and Emilia Gómez. 2017. Monoaural

audio source separation using deep convolutional neural networks. In International

conference on latent variable analysis and signal separation. Springer, 258–266.

[4] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao, Wei Liu, and Tat-

Seng Chua. 2017. Sca-cnn: Spatial and channel-wise attention in convolutional net-

works for image captioning. In Proceedings of the IEEE conference on computer vision

and pattern recognition. 5659–5667.

[5] N. Chomsky. 1956. Three models for the description of language. IRE Transactions

on Information Theory 2, 3 (1956), 113–124. https://doi.org/10.1109/TIT.

1956.1056813

[6] Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis Bach. 2019. Mu-

97

https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813

sic Source Separation in the Waveform Domain. arXiv preprint arXiv:1911.13254

(2019).

[7] W Dixon Ward. 1970. Musical Perception. Foundations of Modern Auditory Theory

1 (1970), 1270–77.

[8] Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. 2020. Clotho: An

audio captioning dataset. In ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 736–740.

[9] Harvey Fletcher. 1938. Loudness, masking and their relation to the hearing process

and the problem of noise measurement. The Journal of the Acoustical Society of

America 9, 4 (1938), 275–293.

[10] Harvey Fletcher and Wilden A Munson. 1937. Relation between loudness and mask-

ing. The Journal of the Acoustical Society of America 9, 1 (1937), 1–10.

[11] Szu-Wei Fu, Ting-yao Hu, Yu Tsao, and Xugang Lu. 2017. Complex spectro-

gram enhancement by convolutional neural network with multi-metrics learning. In

2017 IEEE 27th International Workshop on Machine Learning for Signal Processing

(MLSP). IEEE, 1–6.

[12] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier

neural networks. In Proceedings of the fourteenth international conference on artificial

intelligence and statistics. 315–323.

[13] Nitzan Guberman. 2016. On complex valued convolutional neural networks. arXiv

preprint arXiv:1602.09046 (2016).

[14] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. 2012. Neural networks for

machine learning lecture 6a overview of mini-batch gradient descent. Cited on 14

(2012), 8.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural

Computation 9, 8 (1997), 1735–1780.

98

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017.

Densely connected convolutional networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition. 4700–4708.

[17] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. In International Conference

on Machine Learning. 448–456.

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio

and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[19] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS Torr. 2020. Manigan:

Text-guided image manipulation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 7880–7889.

[20] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan

Catanzaro. 2018. Image inpainting for irregular holes using partial convolutions. In

Proceedings of the European Conference on Computer Vision (ECCV). 85–100.

[21] Jen-Yu Liu and Yi-Hsuan Yang. 2018. Denoising Auto-encoder with Recurrent Skip

Connections and Residual Regression for Music Source Separation. In 2018 17th

IEEE International Conference on Machine Learning and Applications (ICMLA).

IEEE, 773–778.

[22] Jen-Yu Liu and Yi-Hsuan Yang. 2019. Dilated Convolution with Dilated GRU for Mu-

sic Source Separation. In Proceedings of the Twenty-Eighth International Joint Con-

ference on Artificial Intelligence, IJCAI-19. International Joint Conferences on Ar-

tificial Intelligence Organization, 4718–4724. https://doi.org/10.24963/ijcai.

2019/655

[23] Yahui Liu, Marco De Nadai, Deng Cai, Huayang Li, Xavier Alameda-Pineda, Nicu

Sebe, and Bruno Lepri. 2020. Describe What to Change: A Text-guided Unsupervised

99

http://arxiv.org/abs/1412.6980
https://doi.org/10.24963/ijcai.2019/655
https://doi.org/10.24963/ijcai.2019/655

Image-to-Image Translation Approach. In Proceedings of the 28th ACM International

Conference on Multimedia. 1357–1365.

[24] Yi Luo and Nima Mesgarani. 2018. Real-time Single-channel Dereverberation and

Separation with Time-domain Audio Separation Network. In Proc. Interspeech 2018.

342–346. https://doi.org/10.21437/Interspeech.2018-2290

[25] Yi Luo and Nima Mesgarani. 2018. TaSNet: Time-Domain Audio Separation Net-

work for Real-Time, Single-Channel Speech Separation. In 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 696–700.

https://doi.org/10.1109/ICASSP.2018.8462116

[26] Yi Luo and Nima Mesgarani. 2019. Conv-tasnet: Surpassing ideal time–frequency

magnitude masking for speech separation. IEEE/ACM transactions on audio, speech,

and language processing 27, 8 (2019), 1256–1266.

[27] Marco A Mart́ınez Ramı́rez, Emmanouil Benetos, and Joshua D Reiss. 2020. Deep

learning for black-box modeling of audio effects. APPLIED SCIENCES-BASEL 10,

2 (2020).

[28] Marco A Mart́ınez Ramı́rez and Joshua D Reiss. 2018. End-to-end equalization with

convolutional neural networks. In 21st International Conference on Digital Audio

Effects (DAFx-18).

[29] Marco A Mart́ınez Ramı́rez and Joshua D Reiss. 2019. Modeling nonlinear audio

effects with end-to-end deep neural networks. In ICASSP 2019-2019 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

171–175.

[30] Marco A Mart́ınez Ramı́rez, Daniel Stoller, and David Moffat. 2021. A Deep Learning

Approach to Intelligent Drum Mixing with the Wave-U-Net. Journal of the Audio

Engineering Society 69, 3 (2021), 142–151.

100

https://doi.org/10.21437/Interspeech.2018-2290
https://doi.org/10.1109/ICASSP.2018.8462116

[31] D. Matz, Estefańıa Cano, and J. Abeßer. 2015. New Sonorities for Early Jazz Record-

ings Using Sound Source Separation and Automatic Mixing Tools. In ISMIR.

[32] Gabriel Meseguer-Brocal and Geoffroy Peeters. 2019. CONDITIONED-U-NET: In-

troducing a Control Mechanism in the U-net For Multiple Source Separations.. In

20th International Society for Music Information Retrieval Conference, ISMIR (Ed.).

[33] Stylianos Ioannis Mimilakis, Estefanıa Cano, Jakob Abeßer, and Gerald Schuller.

2016. New sonorities for jazz recordings: Separation and mixing using deep neural

networks. In 2nd AES Workshop on Intelligent Music Production, Vol. 13.

[34] Eliya Nachmani, Yossi Adi, and Lior Wolf. 2020. Voice Separation with an Unknown

Number of Multiple Speakers. In Proceedings of the 37th International Conference on

Machine Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé

III and Aarti Singh (Eds.). PMLR, 7164–7175. http://proceedings.mlr.press/

v119/nachmani20a.html

[35] Zhiheng Ouyang, Hongjiang Yu, Wei-Ping Zhu, and Benoit Champagne. 2019. A

Fully Convolutional Neural Network for Complex Spectrogram Processing in Speech

Enhancement. In ICASSP 2019-2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 5756–5760.

[36] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. Lib-

rispeech: An ASR corpus based on public domain audio books. In 2015 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 5206–5210.

https://doi.org/10.1109/ICASSP.2015.7178964

[37] Sungheon Park, Taehoon Kim, Kyogu Lee, and Nojun Kwak. 2018. Music Source

Separation Using Stacked Hourglass Networks. In The 19th International Society for

Music Information Retrieval Conference.

[38] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:

Global Vectors for Word Representation.. In EMNLP, Vol. 14. 1532–1543.

101

http://proceedings.mlr.press/v119/nachmani20a.html
http://proceedings.mlr.press/v119/nachmani20a.html
https://doi.org/10.1109/ICASSP.2015.7178964

[39] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C

Courville. 2018. FiLM: Visual Reasoning with a General Conditioning Layer. In

AAAI.

[40] Jordi Pons, Santiago Pascual, Giulio Cengarle, and Joan Serrà. 2021. Upsampling

artifacts in neural audio synthesis. In ICASSP 2021-2021 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3005–3009.

[41] Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimilakis, and

Rachel Bittner. 2017. MUSDB18 - a corpus for music separation. https://doi.

org/10.5281/zenodo.1117371 MUSDB18: a corpus for music source separation.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on Medical

image computing and computer-assisted intervention. Springer, 234–241.

[43] David Samuel, Aditya Ganeshan, and Jason Naradowsky. 2020. Meta-learning Ex-

tractors for Music Source Separation. In ICASSP 2020-2020 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 816–820.

[44] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks.

IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[45] Michael Stein, Jakob Abeßer, Christian Dittmar, and Gerald Schuller. 2010. Auto-

matic detection of audio effects in guitar and bass recordings. In Audio Engineering

Society Convention 128. Audio Engineering Society.

[46] John C Steinberg. 1937. Positions of stimulation in the cochlea by pure tones. The

Journal of the Acoustical Society of America 8, 3 (1937), 176–180.

[47] Christian J. Steinmetz, Jordi Pons, Santiago Pascual, and Joan Serrà. 2021. Au-

tomatic Multitrack Mixing With A Differentiable Mixing Console Of Neural Audio

Effects. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech

102

https://doi.org/10.5281/zenodo.1117371
https://doi.org/10.5281/zenodo.1117371

and Signal Processing (ICASSP). 71–75. https://doi.org/10.1109/ICASSP39728.

2021.9414364

[48] Christian J Steinmetz and Joshua D Reiss. 2021. Efficient Neural Networks for Real-

time Analog Audio Effect Modeling. arXiv preprint arXiv:2102.06200 (2021).

[49] Daniel Stoller, Sebastian Ewert, and Simon Dixon. 2018. Wave-u-net: A multi-scale

neural network for end-to-end audio source separation. In The 19th International

Society for Music Information Retrieval Conference.

[50] Fabian-Robert Stöter, Antoine Liutkus, and Nobutaka Ito. 2018. The 2018 signal sep-

aration evaluation campaign. In International Conference on Latent Variable Analysis

and Signal Separation. Springer, 293–305.

[51] Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus, and Yuki Mitsufuji. 2019.

Open-Unmix - A Reference Implementation for Music Source Separation. Journal of

Open Source Software 4, 41 (Sept. 2019), 1667. https://doi.org/10.21105/joss.

01667

[52] Naoya Takahashi, Purvi Agrawal, Nabarun Goswami, and Yuki Mitsufuji. 2018.

PhaseNet: Discretized Phase Modeling with Deep Neural Networks for Audio Source

Separation.. In Interspeech. 2713–2717.

[53] Naoya Takahashi, Nabarun Goswami, and Yuki Mitsufuji. 2018. MMDenseLSTM: An

efficient combination of convolutional and recurrent neural networks for audio source

separation. In 2018 16th International Workshop on Acoustic Signal Enhancement

(IWAENC). IEEE, 106–110.

[54] N. Takahashi and Y. Mitsufuji. 2017. Multi-Scale multi-band densenets for audio

source separation. In 2017 IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics (WASPAA). 21–25. https://doi.org/10.1109/WASPAA.

2017.8169987

103

https://doi.org/10.1109/ICASSP39728.2021.9414364
https://doi.org/10.1109/ICASSP39728.2021.9414364
https://doi.org/10.21105/joss.01667
https://doi.org/10.21105/joss.01667
https://doi.org/10.1109/WASPAA.2017.8169987
https://doi.org/10.1109/WASPAA.2017.8169987

[55] Naoya Takahashi and Yuki Mitsufuji. 2020. D3Net: Densely connected multidilated

DenseNet for music source separation. arXiv preprint arXiv:2010.01733 (2020).

[56] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subrama-

nian, Joao Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and

Christopher J Pal. 2018. Deep Complex Networks. In International Conference on

Learning Representations.

[57] Stefan Uhlich, Marcello Porcu, Franck Giron, Michael Enenkl, Thomas Kemp,

Naoya Takahashi, and Yuki Mitsufuji. 2017. Improving music source separation

based on deep neural networks through data augmentation and network blending.

In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 261–265.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In

Advances in neural information processing systems. 5998–6008.

[59] Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte. 2006. Performance mea-

surement in blind audio source separation. IEEE transactions on audio, speech, and

language processing 14, 4 (2006), 1462–1469.

[60] Scott Wisdom, Efthymios Tzinis, Hakan Erdogan, Ron J. Weiss, Kevin Wilson, and

John R. Hershey. 2020. Unsupervised Sound Separation Using Mixture Invariant

Training. In NeurIPS. https://arxiv.org/pdf/2006.12701.pdf

[61] Alec Wright, Eero-Pekka Damskägg, Lauri Juvela, and Vesa Välimäki. 2020. Real-

Time Guitar Amplifier Emulation with Deep Learning. Applied Sciences 10, 3 (2020).

https://doi.org/10.3390/app10030766

[62] Lonce Wyse. 2017. Audio Spectrogram Representations for Processing with Convo-

lutional Neural Networks. In Proceedings of the First International Conference on

Deep Learning and Music. 37–41.

104

https://arxiv.org/pdf/2006.12701.pdf
https://doi.org/10.3390/app10030766

[63] Dacheng Yin, Chong Luo, Zhiwei Xiong, and Wenjun Zeng. 2020. Phasen: A phase-

and-harmonics-aware speech enhancement network. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, Vol. 34. 9458–9465.

[64] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. 2018.

Generative image inpainting with contextual attention. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 5505–5514.

[65] W. Yuan, S. Wang, X. Li, M. Unoki, and W. Wang. 2019. A Skip Attention Mecha-

nism for Monaural Singing Voice Separation. IEEE Signal Processing Letters 26, 10

(Oct 2019), 1481–1485. https://doi.org/10.1109/LSP.2019.2935867

[66] Weitao Yuan, Shengbei Wang, Xiangrui Li, Masashi Unoki, and Wenwu Wang. 2019.

A Skip Attention Mechanism for Monaural Singing Voice Separation. IEEE Signal

Processing Letters 26, 10 (2019), 1481–1485.

[67] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-

to-image translation using cycle-consistent adversarial networks. In Proceedings of the

IEEE international conference on computer vision. 2223–2232.

105

https://doi.org/10.1109/LSP.2019.2935867

Acknowledgement

I would like to appreciate all the supports and helps I received from the committee

chair, Professor Soonyoung Jung, my advisor. I could not have completed my Ph.D.

program without his guidance and advice. I appreciate the other dissertation committee

members, Professor Heonchang Yu, Hyeoncheol Kim, Taeweon Suh, and Jaehwa Chung.

Thanks to their thoughtful comments and advice, I could have revised the dissertation

to significantly improve its quality. I express my special gratitude to Professor Jaehwa

Chung, who constantly inspires my research. He has been my lecturer, senior alumnus,

and project leader member for more than ten years. Thank you, Professor Hong-Jun

Jang, who has taught and guided me to become a better researcher. Also, my sincere

thanks go to Professor Jeongmin Chae, Kinam Park, Daewon Lee, and Byoungwook Kim.

I am so lucky to know you, Dr. Marco A. Mart́ınez Ramı́rez, who has contributed a lot

to the writhing of this dissertation and other works.

Thank you to all the alumni of Intelligence Engineering Lab. Thank you for being

my best friends Kyoungseok Hyun and Jonghyun Min. I miss the sleepless nights that

we spent studying and discussing various issues. I thank Taemin Lee, the kindest and

most brilliant person that I have met. Many thanks go to Minseok Kim, who was a

perfect coworker for me. I believe you will be an outstanding researcher. I am wishing

you lots of success and happiness in your new job, Hyundo Jung. It was a great honor

and a privilege to work with new members of the Intelligence Engineering Lab: Min Shin,

Jinsung Kim, Yeongseok Jeong, and Jun-Hyung Lee. I hope you have good luck in all

you are involved in. Thank you to many other labmates; Taehyung Lim and Gromyko

Diana. Besides, I would like to thank fellows in the department of computer science and

engineering; Han-Yee Kim, Rohyoung Myung, Eunhun Lee and Sang Woo Park.

I am externally grateful to my parents for their love and support throughout my life.

They have encouraged me to be myself and pursue my passions. I also express my thanks

to my beloved sisters and my brother in law. Thank all of you for helping me to accomplish

my dreams.

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Structure and Objectives of the Thesis
	Contributions
	Publications

	Background
	Digital Audio Signal Processing
	Digital Audio Signal
	Multi-track Recording and Audio Mixing
	Audio Effects
	Time-Frequency Analysis

	Deep Learning for Audio Processing
	Audio Source Separation
	Modeling Audio Effects
	Automatic Mixing

	Frequency Transformation for Dedicated Source Separation
	Dedicated Models for Audio Source Separation
	U-Net for Spectrogram-based Source Separation
	Spectrogram Estimation Methods
	Direct Magnitude Estimation
	Magnitude Mask Estimation
	Direct Complex-valued Spectrogram Estimation
	Complex Mask Estimation

	Baseline U-Net Architecture
	Frequency Transformation Block
	Experiment
	Setup
	Comparison of Spectrogram Estimation Methods
	Injecting frequency transformation blocks into a standard U-Net architecture
	Comparison with State-of-the-art Models
	Ablation Study
	Silent Mixture Waveform Separation

	Discussion
	Conclusion

	Frequency Transformation for Conditioned Source Separation
	Conditioned Models for Audio Source Separation
	Latent Source Analysis for Conditioned Separation
	Baseline Architecture: Conditioned U-Net
	The Generic U-Net
	The Condition Generator

	Frequency Transformation for Conditioned Separation
	Naive Approaches
	LaSAFT: Latent Source-attentive Frequency Transformation Blocks

	Feature Modulation
	PoCM: Point-wise Convolutional Modulation
	GPoCM: Gated Point-wise Convolutional Modulation

	Experiments
	Experiment Setup
	Results

	Discussion
	Conclusion

	Latent Source Analysis for Audio Manipulation on Selective Sources
	Audio Manipulation on Specified Sources
	Audio Manipulation Language
	Training Framework for AMSS
	AMSS-Net Architecture
	Description Encoder
	Spectrogram Encoder-Decoder Network
	Aggregate PoCM

	Experiments
	Experiment Setup
	Model Configurations
	Quantitative Analysis
	Latent Source Channels
	Progressive Manipulation
	Controlling the level of audio effects

	Discussion
	Conclusion

	Conclusion
	Appendix
	Appendix A - Context-Free Grammar for Audio Manipulation Language

	Bibliography
	Acknowledgement

